Homework 12

Due Friday, April 19, 2024 at 11:59pm on gradescope
Academic honesty expectations: Same as on previous homeworks. We remind you that internet searches are not permitted.

1. Are the following matrices diagonalizable? If not, explain why. If yes, diagonalize A by finding Q such that $D=Q^{-1} A Q$ is diagonal (you must state what Q and D are but you do not necessarily have to find Q^{-1}). Along the way, for each eigenvalue you should explicitly state the algebraic and geometric multiplicity, and give a basis for the eigenspace. (All matrices here are over the real numbers.)

$$
\text { (a) } A=\left(\begin{array}{cc}
5 & 4 \\
-1 & 1
\end{array}\right) \quad \text { (b) } A=\left(\begin{array}{ccc}
0 & -2 & 1 \\
1 & 3 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

2. In each part below, you are given a linear operator T defined a vector space V. Find the eigenvalues of T, and for each eigenvalue state the algebraic and geometric multiplicity, and find a basis for the eigenspace. Then give a basis β for V for which $[T]_{\beta}$ is diagonal and write the matrix $[T]_{\beta}$.
(a) $T: P_{1}(\mathbb{C}) \rightarrow P_{1}(\mathbb{C})$ defined by $T(a+b x)=(-b+a x)$. (Note that this is over the complex numbers, not the real numbers.)
(b) (a) $T: P_{1}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})$ defined by $T(a+b x)=a+2 b+x(-3 a-4 b)$.
3. (a) Show that if A is a square matrix, then A and A^{t} have the same eigenvalues.
(b) For a common eigenvalue λ, let E_{λ} and F_{λ} be the corresponding eigenspaces for A and A^{t} respectively. Prove that $\operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}\left(F_{\lambda}\right)$ and deduce that A is diagonalizable if and only if A^{t} i s diagonalizable.
(c) Show by example that E_{λ} and F_{λ} need not be the same.
4. Let V be a vector space and let $T: V \longrightarrow V$ be a linear transformation. Let W be a T-invariant subspace of V.
(a) Suppose that $v_{1}, \ldots, v_{k} \in V$ are eigenvectors for T with distinct eigenvalues such that $v_{1}+\cdots+v_{k} \in W$. Show that $v_{i} \in W$ for each i. [Hint: Use induction on k.]
(b) Show that if V is finite dimensional and T is diagonalizable, then T_{W} (the restriction of T to W) is also diagonalizable. [Hint: Start by showing that there is a set of eigenvectors for T in W that span W.]
5. Let V be a finite dimensional vector space over a field F and let $T: V \longrightarrow V$ and $U: V \longrightarrow V$ be linear operators. Suppose that $T U=U T$.
(a) Let λ be an eigenvalue of T and let $E_{\lambda}=\{v \in V \mid T(v)=\lambda v\}$. Show that $U\left(E_{\lambda}\right) \subseteq E_{\lambda}$.
(b) Suppose that $\operatorname{dim} E_{\lambda}=1$. Show that every nonzero element of E_{λ} is an eigenvector for U.
(c) Suppose that T has n distinct eigenvalues in F where n is the dimension of V. Show that there is an ordered basis γ for V such that $[T]_{\gamma}^{\gamma}$ and $[U]_{\gamma}^{\gamma}$ are both diagonal matrices.
