Homework 12

Due Friday, April 19, 2024 at 11:59pm on gradescope

Academic honesty expectations: Same as on previous homeworks. We remind you that internet searches are not permitted.

1. Are the following matrices diagonalizable? If not, explain why. If yes, diagonalize A by finding Q such that $D = Q^{-1}AQ$ is diagonal (you must state what Q and D are but you do not necessarily have to find Q^{-1}). Along the way, for each eigenvalue you should explicitly state the algebraic and geometric multiplicity, and give a basis for the eigenspace. (All matrices here are over the real numbers.)

(a)
$$A = \begin{pmatrix} 5 & 4 \\ -1 & 1 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 0 & -2 & 1 \\ 1 & 3 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

2. In each part below, you are given a linear operator T defined a vector space V. Find the eigenvalues of T, and for each eigenvalue state the algebraic and geometric multiplicity, and find a basis for the eigenspace. Then give a basis β for V for which $[T]_{\beta}$ is diagonal and write the matrix $[T]_{\beta}$.

(a) $T: P_1(\mathbb{C}) \to P_1(\mathbb{C})$ defined by T(a + bx) = (-b + ax). (Note that this is over the complex numbers, not the real numbers.)

- (b) (a) $T: P_1(\mathbb{R}) \to P_1(\mathbb{R})$ defined by T(a+bx) = a + 2b + x(-3a 4b).
- 3. (a) Show that if A is a square matrix, then A and A^t have the same eigenvalues.
 - (b) For a common eigenvalue λ , let E_{λ} and F_{λ} be the corresponding eigenspaces for A and A^t respectively. Prove that $\dim(E_{\lambda}) = \dim(F_{\lambda})$ and deduce that A is diagonalizable if and only if A^t is diagonalizable.
 - (c) Show by example that E_{λ} and F_{λ} need not be the same.
- 4. Let V be a vector space and let $T: V \longrightarrow V$ be a linear transformation. Let W be a T-invariant subspace of V.
 - (a) Suppose that $v_1, \ldots, v_k \in V$ are eigenvectors for T with distinct eigenvalues such that $v_1 + \cdots + v_k \in W$. Show that $v_i \in W$ for each i. [Hint: Use induction on k.]

- (b) Show that if V is finite dimensional and T is diagonalizable, then T_W (the restriction of T to W) is also diagonalizable. [Hint: Start by showing that there is a set of eigenvectors for T in W that span W.]
- 5. Let V be a finite dimensional vector space over a field F and let $T: V \longrightarrow V$ and $U: V \longrightarrow V$ be linear operators. Suppose that TU = UT.
 - (a) Let λ be an eigenvalue of T and let $E_{\lambda} = \{v \in V \mid T(v) = \lambda v\}$. Show that $U(E_{\lambda}) \subseteq E_{\lambda}$.
 - (b) Suppose that dim $E_{\lambda} = 1$. Show that every nonzero element of E_{λ} is an eigenvector for U.
 - (c) Suppose that T has n distinct eigenvalues in F where n is the dimension of V. Show that there is an ordered basis γ for V such that $[T]^{\gamma}_{\gamma}$ and $[U]^{\gamma}_{\gamma}$ are both diagonal matrices.