Homework 8

Due Friday, March 22, 2024 at 11:59pm on gradescope
Academic honesty expectations: Same as on previous homeworks. We remind you that internet searches are not permitted.

1. Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & 5 & 0\end{array}\right)$.
(a) Find elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$ such that $E_{1} E_{2} \cdots E_{k} A=I_{3}$.
(b) Determine A^{-1}.
(c) Write A as a product of elementary matrices.
2. (a) Let A be an $m \times n$ (m rows, n columns) matrix and B be an $n \times p$ matrix. Suppose that $\operatorname{rank}(A)=m$ and $\operatorname{rank}(B)=n$. Find the rank of $A B$. Justify your answer.
(b) Prove or give a counter example to the following statement:

If the $m \times n$ (m rows, n columns) matrix A has rank m, then the system $A x=b$ is consistent for any choice of b.
(c) Prove or give a counter example to the following statement: For two $m \times n$ matrices A, B, we must have $\operatorname{rank}(A+B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.
3. Let $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+2 x_{2}+x_{3}-x_{4}=0\right\}$. Find a basis for V containing $(1,-1,2,1)$.
4. Let $\beta=\{1, x\}$, let $\gamma=\{1, x+1\}$. and let $T: P_{1}(\mathbb{R}) \longrightarrow P_{1}(\mathbb{R})$ be the linear transformation $T(f)=f^{\prime}+x f^{\prime}$. Find $[T]_{\gamma}^{\gamma}$ and $[T]_{\beta}^{\beta}$. Then find a matrix Q such that $Q^{-1}[T]_{\beta}^{\beta} Q=[T]_{\gamma}^{\gamma}$.
5. (a) Let $A=\left(\begin{array}{ccccc}1 & 1 & 3 & 0 & 2 \\ 2 & 0 & 2 & 1 & 3 \\ 3 & 1 & 5 & -1 & 3\end{array}\right)$.

Let us write c_{i} for the i th column of A. Write down B, the reduced row echelon form of A, by making use of the following facts about A.
(i) $c_{3}=c_{1}+2 c_{2}$,
(ii) $c_{5}=c_{1}+c_{2}+c_{4}$, and
(iii) $\operatorname{rank}(\mathrm{A})=3$.
(b) Suppose the reduced row echelon form A^{\prime} of a matrix A is given by

$$
A^{\prime}=\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & -2 \\
0 & 1 & -5 & 0 & 3 \\
0 & 0 & 0 & 1 & 6
\end{array}\right)
$$

Determine A if the first, second, and fourth columns of A are

$$
\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right), \text { and }\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right) .
$$

