Homework 7 for S24 Math 235 Due Friday, March 8 at midnight on gradescope.

Follow the instructions on the course homework page to complete this assignment. Please adhere to the honesty policy detailed on the website. Justify your answers fully.

- 1. Let U and W be vector spaces. We define the product $U \times W$ to mean the set of ordered pairs (u, w) with $u \in U$ and $w \in W$ with operations $(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$ and $\lambda(u, w) = (\lambda u, \lambda w)$. It is easy to see that $U \times W$ is a vector space under these operations.
 - (a) Show that $\dim(U \times W) = \dim U + \dim W$.
 - (b) Now suppose that U and W are both subspaces of a vector space V and let $T: U \times W \longrightarrow V$ be the map sending (u, w) to u + w. Show that dim $N(T) = \dim(U \cap W)$.
- 2. Recall Q2 on Homework 4. You showed that for subspaces U and W of a vector space V, $\dim(U \oplus W) = \dim(U) + \dim(W)$.
 - (a) Prove that $\dim(U+W) = \dim(U) + \dim(W) \dim(U \cap W)$. [Hint: Use 1(b)]
 - (b) Given three subspaces U_1 , U_2 , and U_3 of a vector space V, we may define $U_1 + U_2 + U_3$ as the set of vectors in V of the form $u_1 + u_2 + u_3$, for $u_i \in U_i$. Provide a counterexample showing that the following formula is not always true: $\dim(U_1 + U_2 + U_3) = \dim(U_1) + \dim(U_2) + \dim(U_3) \dim(U_1 \cap U_2) \dim(U_1 \cap U_3) \dim(U_2 \cap U_3) + \dim(U_1 \cap U_2 \cap U_3)$.
- 3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(a, b, c) = (0, a, b). Determine $[T]_{\gamma}$ where $\gamma = \{(1, 0, 1), (1, 3, 0), (0, -1, 0)\}$ is a basis for \mathbb{R}^3 .
- 4. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ denote the reflection through the plane x + y + 3z = 0. Find the matrix $[T]_{\beta}$ where β is the standard ordered basis for \mathbb{R}^3 . (Hint: Start by finding $[U]_{\beta}$ where $U : \mathbb{R}^3 \to \mathbb{R}^3$ is the reflection through the *xy*-plane. That is, U(a, b, c) = (a, b, -c). Then find a basis γ for \mathbb{R}^3 such that $[U]_{\beta} = [T]_{\gamma}$.)

- 5. Suppose $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ is linear. Suppose that $[T]_{\gamma} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ where $\gamma = \{1 + x^2, 1 + 3x, -x\}$. Find $T(a + bx + cx^2)$.
- 6. Consider the bases

$$\alpha = \{(1, 2, 1), (0, 1, 0), (0, -1, 1)\}$$

and

$$\gamma = \{(0, -1, 0), (1, 1, 0), (0, 2, 1)\}$$

for \mathbb{R}^3 . Determine the change of basis matrix $A = [I_{\mathbb{R}^3}]^{\alpha}_{\gamma}$ directly. Then compute it by first finding $[I_{\mathbb{R}^3}]^{\beta}_{\gamma}$ and $[I_{\mathbb{R}^3}]^{\beta}_{\alpha}$ where β is the standard ordered basis.