Homework 7 for S24 Math 235 Due Friday, March 8 at midnight on gradescope.

Follow the instructions on the course homework page to complete this assignment. Please adhere to the honesty policy detailed on the website. Justify your answers fully.

1. Let U and W be vector spaces. We define the product $U \times W$ to mean the set of ordered pairs (u, w) with $u \in U$ and $w \in W$ with operations $\left(u_{1}, w_{1}\right)+\left(u_{2}, w_{2}\right)=\left(u_{1}+u_{2}, w_{1}+w_{2}\right)$ and $\lambda(u, w)=(\lambda u, \lambda w)$. It is easy to see that $U \times W$ is a vector space under these operations.
(a) Show that $\operatorname{dim}(U \times W)=\operatorname{dim} U+\operatorname{dim} W$.
(b) Now suppose that U and W are both subspaces of a vector space V and let $T: U \times W \longrightarrow V$ be the map sending (u, w) to $u+w$. Show that $\operatorname{dim} N(T)=\operatorname{dim}(U \cap W)$.
2. Recall Q2 on Homework 4. You showed that for subspaces U and W of a vector space $V, \operatorname{dim}(U \oplus W)=\operatorname{dim}(U)+\operatorname{dim}(W)$.
(a) Prove that $\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)$. [Hint: Use 1(b)]
(b) Given three subspaces U_{1}, U_{2}, and U_{3} of a vector space V, we may define $U_{1}+U_{2}+U_{3}$ as the set of vectors in V of the form $u_{1}+u_{2}+u_{3}$, for $u_{i} \in U_{i}$. Provide a counterexample showing that the following formula is not always true: $\operatorname{dim}\left(U_{1}+U_{2}+U_{3}\right)=$ $\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)+\operatorname{dim}\left(U_{3}\right)-\operatorname{dim}\left(U_{1} \cap U_{2}\right)-\operatorname{dim}\left(U_{1} \cap U_{3}\right)-$ $\operatorname{dim}\left(U_{2} \cap U_{3}\right)+\operatorname{dim}\left(U_{1} \cap U_{2} \cap U_{3}\right)$.
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T(a, b, c)=$ $(0, a, b)$. Determine $[T]_{\gamma}$ where $\gamma=\{(1,0,1),(1,3,0),(0,-1,0)\}$ is a basis for \mathbb{R}^{3}.
4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote the reflection through the plane $x+y+3 z=0$. Find the matrix $[T]_{\beta}$ where β is the standard ordered basis for \mathbb{R}^{3}. (Hint: Start by finding $[U]_{\beta}$ where $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the reflection through the $x y$-plane. That is, $U(a, b, c)=(a, b,-c)$. Then find a basis γ for \mathbb{R}^{3} such that $[U]_{\beta}=[T]_{\gamma}$.)
5. Suppose $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ is linear. Suppose that $[T]_{\gamma}=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$ where $\gamma=\left\{1+x^{2}, 1+3 x,-x\right\}$. Find $T\left(a+b x+c x^{2}\right)$.
6. Consider the bases

$$
\alpha=\{(1,2,1),(0,1,0),(0,-1,1)\}
$$

and

$$
\gamma=\{(0,-1,0),(1,1,0),(0,2,1)\}
$$

for \mathbb{R}^{3}. Determine the change of basis matrix $A=\left[I_{\mathbb{R}^{3}}\right]_{\gamma}^{\alpha}$ directly. Then compute it by first finding $\left[I_{\mathbb{R}^{3}}\right]_{\gamma}^{\beta}$ and $\left[I_{\mathbb{R}^{3}}\right]_{\alpha}^{\beta}$ where β is the standard ordered basis.

