Homework 5 Due Friday, February 23, 2024 at 11:59pm on gradescope
Academic honesty expectations: Same as on previous homeworks. We remind you that internet searches are not permitted.

1. (a) Find 2×2 matrices A and B such that $A B=O$ but $B A \neq O$. Similarly, find linear transformations $U, T: F^{2} \rightarrow F^{2}$ such that $U T=T_{0}$ (the zero transformation) but $T U \neq T_{0}$.
(b) Let V be a vector space, and let $T: V \rightarrow V$ be linear. Prove that $T^{2}=T_{0}$ if and only if $R(T) \subseteq N(T)$.
2. Let V be a finite dimensional vector space and $T, U: V \rightarrow V$ be non-zero linear maps that satisfy $R(T) \cap R(U)=\left\{0_{V}\right\}$. Prove that T and U are linearly independent in $\mathcal{L}(V)$, the space of linear maps from V to V.
3. Let V, W, and Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear.
(a) Prove that if $U T$ is one-to-one, then T is one-to-one. Must U also be one-to-one?
(b) Prove that if $U T$ is onto, the U is onto. Must T also be onto?
(c) Prove that if U and T are bijections, then $U T$ is also. (A bijection is a transformation that is both one-to-one and onto.)
4. Let $T: M_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be given by

$$
T\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=(a+b)+d x+a x^{2}+(c-b) x^{3}
$$

Find an ordered basis β for $M_{2}(\mathbb{R})$ and an ordered basis γ for $P_{3}(\mathbb{R})$ so that $[T]_{\beta}^{\gamma}$ is the identity matrix I_{4}. Be sure to prove that the β and γ you choose are indeed bases.
5. (a) Let $V=\mathbb{R}^{3}$. Let $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $T_{1}(a, b, c)=(0, b, c)$. Let $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $T_{2}(a, b, c)=(0, a, b)$. Determine $\left[T_{1}\right]_{\beta}$ and $\left[T_{2}\right]_{\beta}$, where β is the standard ordered basis for \mathbb{R}^{3}. Determine bases for $N\left(T_{i}\right)$ and $R\left(T_{i}\right)$ for $i=1,2$..
(b) Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, prove that $R(T) \cap N(T)=\mathbf{0}$. Deduce that $V=R(T) \oplus N(T)$. (Part (a) of this question is designed to help you think about part (b).)

