Problem (1)

(a) Let V be a vector space and W_{1} and W_{2} are subspaces of V. Prove that $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.
(b) For each of the following vectors $v \in V$ and subsets $S \subseteq V$, determine if $v \in \operatorname{Span}(S)$.
(i) $V=\mathbb{R}^{4}$, $S=\{(3,4,-2,7),(6,3,4,3)\}$, and $v=(1,-1,1,0)$.
(ii) $V=P_{3}(\mathbb{R}), S=\left\{x^{3}+2 x, 2 x^{3}+1, x^{2}-x\right\}$, and $v=7 x^{3}-11 x^{2}-5_{x}+4$.

Problem (2) Read p. 22 where the sum $W_{1}+W_{2}$ of two subspaces W_{1} and W_{2} of a vector space V is defined and where the direct sum $W_{1} \oplus W_{2}$ of two subspaces W_{1} and W_{2} of a vector space V is defined.
(a) Show that $W_{1}+W_{2}$ is a subspace of V.
(b) In other texts, we see the direct sum of W_{1} and W_{2} defined differently. That is, $W_{1}+W_{2}$ is a direct sum, and we write $W_{1} \oplus W_{2}$, if every element x in $W_{1}+W_{2}$ can be written uniquely as a sum $x=u_{1}+u_{2}$ where $u_{1} \in W_{1}$ and $u_{2} \in W_{2}$. Show that the two definitions are equivalent. (That is, show that if $W_{1} \cap W_{2}=\{\mathbf{0}\}$, then every $x \in W_{1}+W_{2}$ can be written uniquely as a sum $x=u_{1}+u_{2}$ where $u_{1} \in W_{1}$ and $u_{2} \in W_{2}$. Then show that, if every $x \in W_{1}+W_{2}$ can be written uniquely, then $W_{1} \cap W_{2}=\{\mathbf{0}\}$.)
(c) We can defined the sum and direct sum of more than two subspaces. In the case of the direct sum, $W_{1} \oplus W_{2} \oplus \cdots \oplus W_{n}$, it is not sufficient to require that $W_{i} \cap W_{j}=\{\mathbf{0}\}$ for each $1 \leq i, j \leq n$ with $i \neq j$ in order to get the uniqueness property described in (b) . We need the stronger condition that

$$
W_{j} \cap \sum_{i \neq j} W_{i}=\{\mathbf{0}\} .
$$

Show this is true. First provide an example of a vector space V and three subspaces W_{1}, W_{2}, W_{3} such that $W_{1} \cap W_{2}=\{\mathbf{0}\}, W_{1} \cap W_{3}=\{\mathbf{0}\}$, and $W_{2} \cap W_{3}=\{\mathbf{0}\}$, but there is a vector x such that x can be expressed in more than one way as $x=u_{1}+u_{2}+u_{3}$, with $u_{1} \in W_{1}, u_{2} \in W_{2}$, and $u_{3} \in W_{3}$. Then show that, if the stronger condition is true, uniqueness follows.

Problem (3) Let $\mathcal{F}(\mathbb{R}, \mathbb{R})$ denote the space of functions from \mathbb{R} to \mathbb{R}.
(a) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is even (resp. odd) if $f(-x)=f(x)$ (resp. $f(-x)=-f(x)$). Let $\mathcal{F}_{\text {even }}(\mathbb{R}, \mathbb{R})$ and $\mathcal{F}_{\text {odd }}(\mathbb{R}, \mathbb{R})$ denote the collections of even and odd functions respectively, from \mathbb{R} to \mathbb{R}. Show that $\mathcal{F}_{\text {even }}(\mathbb{R}, \mathbb{R})$ and $\mathcal{F}_{\text {odd }}(\mathbb{R}, \mathbb{R})$ are subspaces of $\mathcal{F}(\mathbb{R}, \mathbb{R})$
(b) Show that $\mathcal{F}(\mathbb{R}, \mathbb{R})=\mathcal{F}_{\text {even }}(\mathbb{R}, \mathbb{R}) \oplus \mathcal{F}_{\text {odd }}(\mathbb{R}, \mathbb{R})$. (Hint: Suppose $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, and consider $h(x)=f(x)+f(-x)$.)

Problem (4)

Let V be a vector space and W a subspace of V. Given $x \in V$, the set $x+W:=\{x+y: y \in W\}$ is called the coset of W containing x. (For example, let $V=\mathbb{R}^{3}$. Let $W=\{(x, y, 0) \mid x, y \in \mathbb{R}\}$. Let $x=(0,0,1)$. Then $x+W$ would be $\{(x, y, 1) \mid x, y \in \mathbb{R}\}$; geometrically, this is the horizontal plane through the point x.)
(a) If x is not an element of W, can $-x$ be an element of W ?
(b) If $x+W=W$, what can you conclude about x ? What must be true of x for $x+W$ to be a subspace of V ?
(c) Prove that for any $h \in W,(x+h)+W=x+W$.
(d) Show that $x+W=x^{\prime}+W$ if and only if $x-x^{\prime}$ is in W. (Hint: It may help to use parts b and c)
(e) Prove that two cosets are either disjoint or else they are equal.

