Homework 13

Due Sunday, April 28, 2024 at 11:59pm on gradescope
Academic honesty expectations: Same as on previous homeworks. We remind you that internet searches are not permitted.

1. Let V be a finite dimensional vector space, and let $T, U: V \longrightarrow V$ be linear operators.
(a) Let W_{1}, \ldots, W_{n} subspaces of V that are invariant under both T and U (that is, $T\left(W_{i}\right) \subseteq W_{i}$ and $U\left(W_{i}\right) \subseteq W_{i}$ for each i). Suppose that

$$
W_{1}+\cdots+W_{n}=V
$$

Show that if $T_{W_{i}} U_{W_{i}}=U_{W_{i}} T_{W_{i}}$ for each i, then $T U=U T$.
(b) Suppose that T is diagonalizable. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the eigenvalues of T and for each i, let $E_{\lambda_{i}}=\left\{v \in V \mid T(v)=\lambda_{i} v\right\}$. Show that if $U\left(E_{\lambda_{i}}\right) \subseteq E_{\lambda_{i}}$ for each i, then $T U=U T$. (Last week you showed the other direction, that if $T U=U T$ then $U\left(E_{\lambda_{i}}\right) \subseteq E_{\lambda_{i}}$.)
2. Let V be a vector space and let $T: V \longrightarrow V$ be a linear operator. Let $v \in V$ and let W be the T-cyclic space generated by v (that is, W is the span of $\left.\left\{v, T(v), \ldots, T^{n}(v), \ldots\right\}\right)$. Show that if Z is a T-invariant subspace of V that contains v, then Z also contains W.
3. Let $T \in \mathcal{L}\left(P_{3}(\mathbb{R})\right)$ be defined as $T(f(x))=f^{\prime \prime}(x)$.
(a) Determine a basis $\beta_{W_{1}}$ for W_{1}, the cyclic subgroup generated by $f(x)=x^{3}$. Find $\left[T_{W_{1}}\right]_{\beta_{W_{1}}}$ and the characteristic polynomial of $T_{W 1}$.
(b) Choose a vector generating a cyclic subgroup W_{2} such that $P_{3}=W_{1} \oplus W_{2}$. Repeat the same steps as in (a) for your W_{2}.
(c) Now let β be the standard ordered basis for P_{3}. Determine $[T]_{\beta}$ and conclude that the characteristic polynomial of T is the product of the characteristic polynomials of $T_{W_{1}}$ and $T_{W_{2}}$.
4. (a) Apply the Gram-Schmidt process to the set $\{(1,0,1),(0,1,1),(1,2,1)\}$ in \mathbb{R}^{3} to obtain an orthogonal basis.
(b) Apply the Gram-Schmidt process to the set $\left\{\left(\begin{array}{ll}2 & 2 \\ 2 & 1\end{array}\right),\left(\begin{array}{cc}11 & 4 \\ 2 & 5\end{array}\right),\left(\begin{array}{cc}4 & -12 \\ 3 & 16\end{array}\right)\right\}$ in $M_{2 \times 2}(\mathbb{R})$ to obtain an orthogonal set with the same span.

5 . Let V be an inner product space over \mathbb{R}.
(a) Show that if x and y are orthogonal vectors in V, then $\|x\|^{2}+\|y\|^{2}=$ $\|x+y\|^{2}$. Deduce the Pythagoerean Theorem in \mathbb{R}^{2}.
(b) Show that x and y are orthogonal if and only if $\|x\| \leq\|x+a y\|$ for any $a \in \mathbb{R}$. [Hint: One direction of the proof is easy. For the other, choose a carefully as in the proof of the Cauchy-Schwarz inequalty.]
6. (a) Let W be a subset of a finite-dimensional inner product space V. Prove that W is a subspace if and only if $\left(W^{\perp}\right)^{\perp}=W$.
(b) Let V be the vector space of all sequences σ of real numbers such that $\sigma(n)=0$ for all but finitely many n. (That is, V is the set of sequences that are eventually zero.) For $\sigma, \mu \in V$ define an

$$
\langle\sigma, \mu\rangle=\sum_{n=1}^{\infty} \sigma(n) \mu(n)
$$

i. Prove that $\langle\cdot, \cdot\rangle$ defined above is an inner product.
ii. Let $e_{n}=(0,0, \ldots, 0,1,0, \ldots)$ be the vector which has 1 in the $\mathrm{n} t h$ position and zero elsewhere. Prove that $\left\{e_{1}, e_{2}, \ldots\right\}$ is an orthonormal basis for V.
iii. Let $\sigma_{n}=e_{1}+e_{n}$ and let $W=\operatorname{span}\left\{\sigma_{n}: n \geq 2\right\}$.
A. Show that $e_{1} \notin W$, so $W \neq V$.
B. Prove that $W^{\perp}=\{0\}$ and conclude that $W \neq\left(W^{\perp}\right)^{\perp}$.

