Homework 10

Due Saturday, April 6, 2024 at 11:59pm on gradescope
Academic honesty expectations: Same as on previous homeworks. We remind you that internet searches are not permitted.

1. Compute the determinant of the following matrix by first reducing it to an upper-triangular matrix.

$$
A=\left(\begin{array}{cccc}
3 & -1 & 5 & 6 \\
6 & 0 & 8 & 10 \\
0 & 7 & -5 & -1 \\
-3 & 5 & 0 & 1
\end{array}\right)
$$

2. Let $v=\left(v_{1}, v_{2}, v_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ be vectors in \mathbb{R}^{3} and consider the column matrix

$$
A=(v, u)=\left(\begin{array}{ll}
v_{1} & u_{1} \\
v_{2} & u_{2} \\
v_{3} & u_{3}
\end{array}\right)
$$

Show that

$$
\operatorname{det}\left(A^{T} A\right)=\left(\operatorname{det}\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2}
\end{array}\right)\right)^{2}+\left(\operatorname{det}\left(\begin{array}{ll}
u_{1} & v_{1} \\
u_{3} & v_{3}
\end{array}\right)\right)^{2}+\left(\operatorname{det}\left(\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right)\right)^{2}
$$

3. Prove that $\operatorname{Det}\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)=\operatorname{Det}(A) \operatorname{Det}(C)$, where A and C are square matrices (not necessarily of the same size).
4. Let A be an $n \times n$ matrix with rows a_{1}, \ldots, a_{n}. Compute the determinant of the matrix B with rows $a_{n}, \ldots a_{1}$ in terms of the determinant of A.
