MTH 235

Midterm 2
April 2, 2024

Name:

Student ID:

(If you do not know your SID, provide your netid.)

The Department of Mathematics adheres to the university's academic honesty policy. In addition, the following restrictions apply to this exam:

1. No phones, calculators or any other devices that could help you answer any part of this exam are permitted.
2. No notes or formula sheets or similar documents are permitted.

PLEASE COPY THE HONOR PLEDGE AND SIGN:
(Cursive is not required).
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.
\qquad

1. (20 points) Let $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$
(a) Determine elementary matrices E_{1} and E_{2} such that $E_{2} E_{1} A=I_{2}$.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \xrightarrow[p]{R_{2}-2 R_{1}}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \xrightarrow[p]{\xrightarrow{R_{1}-R_{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
E_{1}=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

(b) Determine A^{-1}.

$$
E_{2} E_{1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]=A^{-1}
$$

(c) Find a basis γ for \mathbb{R}^{2} such that A is equal to the change of basis matrix $\left[I_{2}\right]_{\beta}^{\gamma}$ where $\beta=\left\{e_{1}, e_{2}\right\} .\left(A=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]\right.$ as on the last page $)$
If $A=\left[I_{2}\right]_{\beta}^{\gamma}$, then $A^{-1}=\left[I_{2}\right]_{\gamma}^{\beta}$

$$
\text { So }\left[I_{2}\right]_{\gamma}^{\beta}=\left[\begin{array}{rr}
3 & -1 \\
-2 & 1
\end{array}\right] \text {. }
$$

This nears the colure of A^{-1} ore the β-coordinate vectors of the desind γ vectors.
Hence $r=\{(3,-2),(-1,1)\}$.
2. (25 points) Let A be a matrix having reduced row echelon form

$$
E=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Determine whether or not $L_{A}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ is onto, or explain why you do not have enough information.

Since column 1,3 , ad 5 of E are e_{1}, e_{2}, art e_{3}, the y are inlepubt. Hence E has sank 3. Since row operations preserve vault, we low A has rack 3. This makes $R(L A)$ a subspace of \mathbb{R}^{3} of dimension 3 , so $R\left(L_{A}\right)=\mathbb{R}^{3}$. Then $L_{A} \cdot 3$ onto.
(b) Determine whether or not the second, fourth, and fifth columns of A are linearly ingependent or explain why do you not have enough information to do so.
we know that E has beer obtained from A by a serquere of EROS. Scapose $M=E_{k} E_{k \ldots} \ldots E_{2} E_{1}$ is th product of the elentry notices we unltply A bo to get E. That is $M A=E$. Suppose C_{2}, C_{1}, C_{5} ore the $2 M, 41^{4}+5^{\text {th }}$ columns of A. the $M C_{2}=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right), ~ M C_{4}=\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right)$ at $M C_{5}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. Suppose there are corsterts a_{2}, a_{4}, a_{5} such that

$$
a_{2} c_{2}+a_{4} c_{4}+a_{5} c_{5}=0
$$

Then $M\left(a_{2} c_{2}+a_{4} c_{4}+a_{5} c_{5}\right)=0$
That nears $a_{2} M_{C_{2}}+a_{4} M_{C_{4}}+a_{5} M_{C_{5}}=0$.
Or $\quad a_{2}\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)+a_{4}\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right)+a_{5}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=0$. Tan $\quad a_{2}=0,-a_{4}=0,01 a_{5}=0$.
Which mans $a_{2}=a_{4}=a_{5}=0$. then c_{2}, c_{4}, c_{5} one indupendurt.
(c) For your convenience, we will write down the information about A from the previous page: A is a matrix having reduced row echelon form

$$
E=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Find a basis for the nullspace of A, or explain why you do not have enough information to do so.

The nullspace of E is equal to ter wullspace of A,
as $E_{x}=0$ or $A_{x}=0$ are equivolut systems.
Set $x_{2}=s$ an $x_{4}=t_{1}$ free poratios. tan $x_{1}+2_{s}=0$ ar $x_{3}-t=0$. Finale, $x_{5}=0$.

The vectors are deals indupenet.
So a basis for $\operatorname{null}(A)=\{(-2,1,0,0,0),(0,0,1,1,0)\}$
(d) For your convenience, we will write down the information about A from the previous page: A is a matrix having reduced row echelon form

$$
E=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Find a solution $x \in \mathbb{R}^{5}$ to the $A x=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ or explain why you do not have enough information to do so.

We do not have evough in farnution. Suppose (as in port (b)), that $M A=E$.

$$
\begin{aligned}
& \text { appose (as in part (b)), that } \\
& \text { Tan, if } A_{x}=\left(\begin{array}{l}
1 \\
\vdots \\
!
\end{array}\right), \quad M A x=E x=M\binom{1}{!} \text {. }
\end{aligned}
$$

Since M is unknown to us, so is $M(!!)$,
So wire cot able to solve $E_{x}=M\binom{!}{!}$ or, equiraleutly,

$$
A x=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

3. (15 points) Let $\gamma=\{1+x, 2+x\}$ be an ordered basis for $P_{1}(\mathbb{R})$. Let T be a linear operator on $P_{1}(\mathbb{R})$. Suppose that

$$
[T]_{\gamma}=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
$$

(a) Let $\beta=\{1, x\}$ be the standard ordered basis for $P_{1}(\mathbb{R})$. Find a matrix Q such that

$$
\begin{aligned}
& Q[T]_{\gamma} Q^{-1}=[T]_{\beta} \\
& {[T]_{\beta} }=\left[I_{P_{1}(\mathbb{R})}\right]_{\gamma}^{\beta}[T]_{\gamma}\left[I_{P_{1}(\mathbb{R})}\right]_{\beta}^{\gamma} \\
& \mathbb{Q}=\left[I_{P_{1}(\mathbb{R})}\right]_{\gamma}^{\beta} \text { is ter desinal netix. } \\
& Q=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

(b) Find $T(-3 x+5)$.

$$
\begin{aligned}
& {[T]_{\beta} }=Q\left[\begin{array}{l}
T
\end{array}\right] \gamma Q^{-1} \\
& Q=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]_{1} \text { so } G^{-1}=\frac{1}{1-2}\left[\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right] \\
& {[T]_{\beta} }=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right] \\
&=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-3 & 6 \\
2 & -2
\end{array}\right] \\
&= {\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right] } \\
& {[T(-3 x+5)]_{\beta}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right]\left[\begin{array}{c}
5 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-17
\end{array}\right] } \\
& T(-3 x+5)=-1-17 x .
\end{aligned}
$$

4. (20 points) Suppose that $A \in M_{2 \times 3}(\mathbb{R})=\left(\begin{array}{lll}1 & 0 & 2 \\ 1 & 1 & 4\end{array}\right)$.
(a) Find a matrix B satisfying

$$
A B=\left(\begin{array}{cc}
-2 & -1 \\
1 & 14
\end{array}\right)
$$

Row reducing A wi the

$$
\begin{aligned}
& \text { col comas of } \quad\left(\begin{array}{cc}
-0 & -1 \\
1 & 14
\end{array}\right) \\
& g \text { ives } \\
& \left(\begin{array}{lll:cc}
1 & 0 & 2 & -2 & -1 \\
1 & 1 & 4 & 1 & 14
\end{array}\right) \\
& \left(\begin{array}{lll:cc}
1 & 0 & 2 & -2 & -1 \\
0 & 1 & 2 & 3 & 15
\end{array}\right)
\end{aligned}
$$

bo letting

$$
B=\left(\begin{array}{cc}
-2 & -1 \\
3 & 15 \\
0 & 0
\end{array}\right) \text { works }
$$

(b) Let U be set of all $C \in M_{3 \times 2}(\mathbb{R})$ (three rows, two columns) such that

$$
A C=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

(where A is $\left(\begin{array}{lll}1 & 0 & 2 \\ 1 & 1 & 4\end{array}\right)$, as before) Show that U is subspace of $M_{3 \times 2}$ and calculate its
dimension. Explain your answer carefully dimension. Explain your answer carefully.

It is θ subspcece since
(i) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right) \in V$
(ii) $A C_{1}=0$ and $A C_{2}=0$
mech as $\mathcal{A}\left(c_{1}+c_{2}\right)=0$
Gil $A C=0$ mean c

$$
A \chi C=\pi A C=0
$$

Now, we know A row reduces to

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right) \text { which hos }\left\{\left(\begin{array}{c}
-2 \\
-2 \\
1
\end{array}\right)\right\}
$$

es a basis for ito null space
bo U nos a bess of

$$
\left\{\left(\begin{array}{cc}
-2 & 0 \\
-2 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & -a \\
0 & -0 \\
0 & 1
\end{array}\right)\right\}
$$

so dim $U=2$
5. (20 points) IMPORTANT: The T / F will be graded as follows: You will get 2 pts for a correct response. You will get 0 points for no response. You will get -0.5 for an incorrect response. This is different from the scoring on midterm 1. (You will get a minimum of zero for this question -no negatives.)

1. $A^{2}=I$ implies $A=I$ or $A=-I$.True
© False

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$No response

2. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear transformation and let α and β be ordered bases for \mathbb{R}^{n}. Then we have $\left([T]_{\alpha}^{\beta}\right)^{-1}=\left[T^{-1}\right]_{\alpha}^{\beta}$
\square True
\pm False
$\left([T]_{\alpha}^{\beta}\right)^{-1}=\left[T^{-T}\right]_{\beta}^{\alpha}$No response
3. Every change of coordinate matrix is invertible.
\pm True
False
A charge if coardinte netix is tee
matrix of or :duntity trinsfornction. For
any trimstorntion $[T]$ is in mutiole
if and aby if T is.
4. An elementary matrix is always square.
\star True

False
No response
5. The only entries in an elementary matrix are zeros and ones.
True
\otimes False

$$
\begin{aligned}
& \text { Consider ten rectrix obtamil } \\
& \text { by adding tune one row } \\
& \text { of In to anoter. }
\end{aligned}
$$

No response
6. If B is a matrix that can be obtained by performing an elementary row operation on a matrix A, then A can be obtained by performing an elementary row operation on B.
© True

$$
\begin{aligned}
& E A=B \Rightarrow A=E^{-1} B \\
& E^{-1} \text { i also on elemectoy matrix. }
\end{aligned}
$$No response

7. If E is an elementary matrix, then $\operatorname{det}(E)= \pm 1$.
\square True
® False

$$
\begin{aligned}
& \text { Consider ta rectrix sbtaind } \\
& \text { by multiplying on row of } \\
& \text { In by } 3 \text {. }
\end{aligned}
$$No response

8. Let $T: V \longrightarrow V$ be a linear transformation. Then if T is onto, it must also be one-to-one.

$$
\text { This holds if } V .3 \text { finite-dinensional. }
$$

\square True
囚 False
A counterexample: $T: S \rightarrow S$ whore $S 3$ the space
\square No response
of infinite squares.

$$
\begin{aligned}
& T\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right) \text { is onto, but not oneto-ons. } \\
& T\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right) \text { is onto, but not into. }
\end{aligned}
$$

9. Regardless of of the specific operations you use to row reduce a matrix, you will arrive at the same reduced row echelon matrix.

$$
\mathbb{Q} \text { True The RREF of A . } 3 \text { ming. }
$$FalseNo response

10. The span of the columns of a matrix is the same as the span of the columns of its reduced row echelon form.True let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Its column span is $\operatorname{spm}\{(1)\}$. Z False

Its RREF Form 's $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. Its columns pow is
No response span $\left\{\binom{1}{0}\right\}$.

