MTH 235

Midterm 2 April 2, 2024

Name: <u>Solutions</u>

Student ID:

(If you do not know your SID, provide your netid.)

The Department of Mathematics adheres to the university's academic honesty policy. In addition, the following restrictions apply to this exam:

- 1. No phones, calculators or any other devices that could help you answer any part of this exam are permitted.
- 2. No notes or formula sheets or similar documents are permitted.

PLEASE COPY THE HONOR PLEDGE AND SIGN:

(Cursive is not required).

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE:_____

1. (20 points) Let $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$

(a) Determine elementary matrices E_1 and E_2 such that $E_2E_1A = I_2$.

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$F_1 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \qquad F_2 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

(b) Determine A^{-1} .

$$E_{2}E_{1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} = A^{-1}$$

(c) Find a basis γ for \mathbb{R}^2 such that A is equal to the change of basis matrix $[I_2]^{\gamma}_{\beta}$ where $\beta = \{e_1, e_2\}$. $(A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ as on the last page) If $A = (\sum z)^{\gamma}_{\beta}$, then $A^{-1} = (\sum z)^{\beta}_{\gamma}$ So $(\sum z)^{\beta}_{\gamma} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$. This means the colume of A^{-1} ore then β - counter Ac vectors of the desired γ vectors. Hence $\gamma = \sum (3, -2), (-1, 1) \geq 3$. 2. (25 points) Let A be a matrix having reduced row echelon form

$$E = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) Determine whether or not $L_A : \mathbb{R}^5 \to \mathbb{R}^3$ is onto, or explain why you do not have enough information.

Since columns 1,3, and 5 of E are e, ez, and ez, they are independent. Hence E has vanke 3. Since now operations preserve vande, we low A has vale 3. This makes R(LA) a subspace of TR³ of dimension 3, so R(LA) = TR³. Then LA is onto.

(b) Determine whether or not the second, fourth, and fifth columns of A are linearly independent or explain why do you not have enough information to do so.

We know that E has been obtained from A by a Sequence of EROS. Suppose $M = E_{k}E_{k}$, $E_{z}E_{1}$, z_{z} to product of the elevity volvices we withply A by to get E. that B = E. Suppose $(2_{1}, C_{1}, C_{2} \text{ on } t_{1}, 2_{1}, 1_{1}, t_{2}, 5^{th} \text{ colms}$ of A. The $M_{C_{2}} = \binom{2}{5}_{1}$, $M_{C_{4}} = \binom{0}{-5}_{0}$ of $M_{C_{5}} = \binom{0}{5}_{1}$. Suppose the an constants A_{z}, a_{1}, a_{5} such that $a_{z}C_{z} + a_{y}C_{y} + a_{5}C_{5} = 0$. That means $a_{z}M_{C_{2}} + a_{y}M_{C_{4}} + a_{5}M_{C_{5}} = 0$. $O_{1} = a_{z}\binom{2}{5} + a_{y}\binom{-5}{5} + a_{5}\binom{0}{-5} = 0$. The $C_{2}z^{-3}z^{-3}z^{-3} - a_{1}=0$, and $a_{5}=0$. Which means $a_{z} = a_{4} = a_{5} = 0$. The $C_{z_{1}}C_{y}, C_{5}$ on independent. (c) For your convenience, we will write down the information about A from the previous page: A is a matrix having reduced row echelon form

$$E = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Find a basis for the nullspace of A, or explain why you do not have enough information to do so.

The nullspace of E is equal to the nullspace of H,
as
$$E_{X=0}$$
 on $A_{X=0}$ on equivalent systems.
Set $x_2 = s$ on $x_4 = t_1$ free paretes. Then
 $x_1 + 2s = 0$ of $x_3 - t = 0$.
Finally, $x_5 = 0$.
So the nullspace of $E = \sum (-2s_1 s_1 t_1 t_1 0)(s_1 t \in t \in t ; 3)$.
 $= span \sum (-2_1 1, 0, 0_1 0), (0_2 0, 1, 1, 0) = 3$.
Tuse vectors are deally independent.
So a basis for null (A) = $\sum (-2_1 1, 0, 0, 0), (0, 0, 1, 1, 0) = 3$.

(d) For your convenience, we will write down the information about A from the previous page: A is a matrix having reduced row echelon form

$$E = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Find a solution $x \in \mathbb{R}^5$ to the $Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ or explain why you do not have enough information to do so.

We do not have errough in formation.
Suppose (as in part (b)), that NA = E.
Then, if
$$A_{x} = (:)$$
, $MA_{x} = E_{x} = M(:)$.
Since M.S unknown to us, so is $M(:)$,
So with not able to solve $E_{x} = M(:)$ or, equivalently,
 $A_{x} = (:)$.

3. (15 points) Let $\gamma = \{1 + x, 2 + x\}$ be an ordered basis for $P_1(\mathbb{R})$. Let T be a linear operator on $P_1(\mathbb{R})$. Suppose that

$$[T]_{\gamma} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}.$$

(a) Let $\beta = \{1, x\}$ be the standard ordered basis for $P_1(\mathbb{R})$. Find a matrix Q such that $Q[T]_{\gamma}Q^{-1} = [T]_{\beta}$

$$\begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} I_{P_{i}(\mathbf{R})} \end{bmatrix}_{\gamma}^{\beta} \begin{bmatrix} T \end{bmatrix}_{\gamma} \begin{bmatrix} T \end{bmatrix}_{\gamma} \begin{bmatrix} I_{P_{i}(\mathbf{R})} \end{bmatrix}_{p}^{\gamma}$$

$$K_{in} \qquad Q = \begin{bmatrix} I_{P_{i}(\mathbf{R})} \end{bmatrix}_{\gamma}^{\beta} \quad is \quad \text{for obscord vehix.}$$

$$Q = \begin{bmatrix} I & Z \\ I & I \end{bmatrix}.$$

$$\begin{bmatrix} T \end{bmatrix}_{\beta} = \mathbb{Q} \begin{bmatrix} T \end{bmatrix}_{\gamma} \mathbb{Q}^{-1}.$$

$$\mathbb{Q} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}_{\gamma} \quad \text{So} \quad \mathbb{G}^{-1} = \frac{1}{1-2} \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} T & (-3x+5) \end{bmatrix}_{\beta} = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ -17 \end{bmatrix}$$

$$T (-3x+5) = -1 - 17x.$$

4. (20 points) Suppose that $A \in M_{2\times 3}(\mathbb{R}) = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{pmatrix}$.

(a) Find a matrix B satisfying

$$AB = \begin{pmatrix} -2 & -1 \\ 1 & 14 \end{pmatrix}.$$
Row reducing A wy the
Columns of $\begin{pmatrix} -3 & -1 \\ 1 & 14 \end{pmatrix}$

bo letting

$$B = \begin{pmatrix} -3 & -1 \\ 3 & 15 \\ 0 & 0 \end{pmatrix}$$
 Works

(b) Let U be set of all $C \in M_{3 \times 2}(\mathbb{R})$ (three rows, two columns) such that

$$AC = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

(where A is $\begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{pmatrix}$, as before) Show that U is subspace of $M_{3\times 2}$ and calculate its dimension. Explain your answer carefully.

It is a colorpole cince
(i)
$$\begin{pmatrix} 0.9\\ 0.0 \end{pmatrix} \in V$$

(ii) $AC_1 = 0$ and $AC_2 = 0$
means $A(C_1 + C_2) = 0$
(iii) $AC = 0$ means
 $A \gamma C = \gamma AC = 0$
Now, we know A now reduces to
 $\begin{pmatrix} 0 & 1 & 2 \end{pmatrix}$ which has $\begin{pmatrix} -3\\ -3 & 2 \end{pmatrix}$
as a basis for its null space
bo U has a basis of
 $\begin{pmatrix} 0 & -3\\ 0 & -3 \end{pmatrix} \begin{pmatrix} 0 & -3\\ 0 & -3 \end{pmatrix}$

5. (20 points) IMPORTANT: The T/F will be graded as follows: You will get 2 pts for a correct response. You will get 0 points for no response. You will get -0.5 for an incorrect response. This is different from the scoring on midterm 1. (You will get a minimum of zero for this question-no negatives.)

1.
$$A^2 = I$$
 implies $A = I$ or $A = -I$.

 \Box True

⊠ False

- \Box No response
- 2. Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and let α and β be ordered bases for \mathbb{R}^n . Then we have $([T]^{\beta}_{\alpha})^{-1} = [T^{-1}]^{\beta}_{\alpha}$
 - \Box True

$$\left(\left[\tau\right]_{\alpha}^{\beta}\right)^{-1} = \left[\tau^{-1}\right]_{\beta}^{\alpha}$$

- \Box No response
- 3. Every change of coordinate matrix is invertible.
 - ☑ True
 A charge of coordinate native is the
 □ False
 □ No response
 any true downation [T] is in writicle
 iF well only if T is,
- 4. An elementary matrix is always square.

☑ True An elementary netrix is obtained
□ False by a new opwation in In.
□ No response

- 5. The only entries in an elementary matrix are zeros and ones.
 - □ True (onsider ter vetix obtannel ▷ False of In to avoter. □ No response

6. If B is a matrix that can be obtained by performing an elementary row operation on a matrix A, then A can be obtained by performing an elementary row operation on B.

Image: Second stateImage: E A = B => A = E^{-1} BImage: Definition of FalseE^{-1} is also on elementary notation.Image: Definition of the second stateNo response

7. If E is an elementary matrix, then $det(E) = \pm 1$.

- □ True (-vs-her for retrix stofound ▷ False by vultiplying on row of In by 3.
- \Box No response
- 8. Let $T: V \longrightarrow V$ be a linear transformation. Then if T is onto, it must also be one-to-one.

		This holds, if Viz timite-dimensional.
	True	A contrexaple: T: 5-35 she 5.3 to space
K	False	
	No response	of intimite sequences. $T(a_1, a_{21}, \dots) = (a_2, a_3, \dots)$ is onto, but not overtorone.
		$\tau(\alpha_{i_1}\alpha_{2_1}, \dots) = (0, \alpha_{i_1}\alpha_{2_1}, \dots) \text{is on-to-on, but not onto.}$

- 9. Regardless of the specific operations you use to row reduce a matrix, you will arrive at the same reduced row echelon matrix.
 - A True the RREF of A . 3 mangue.
 - \Box False
 - \Box No response
- 10. The span of the columns of a matrix is the same as the span of the columns of its reduced row echelon form.
 - □ True let A= [!']. Its column spon is spon ≥ (')3. ⊠ False Its RREF Form is [0]. Its columns pour is □ No response Spon ≥ (')3.