To review for the midterm

- Review your notes, the text, the homework problems, and the suggested exercises in the schedule.
- Do all true false questions in the text. The exam will include a significant T/F section.
- Below is a list of topics for the exam and a sampling of questions from past exams. Review these also.
- VERY IMPORTANT. These are just questions from old exams for your practice. The questions on our exam may not be similar.

Linear transformations and matrics

- Matrix representations.
- Composition of linear transformations and matrix multiplication
- Isomorphism and Invertibility
- Computing change of coordinate matrices

Elementary Operatations and Systems of linear equations

- Know the rank of a matrix and be comfortable computing inverses using augmented matrices.
- Reduced Row Echelon form and row reduction.
- Column and row operations and multiplication by elementary matrices.
- Definition and properties of homogeneous and inhomogeneous systems and solutions.
- consistent and inconsistent systems.

Example Problems from old exams

(1) Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be defined by $T\left(a+b x+c x^{2}\right)=a-3 b+5 c x+(a+c) x^{2}$.. Let $\gamma=\left\{1-x^{2}, x^{2}+x,-5+4 x^{2}\right\}$. Find $[T]_{\gamma}$. Prove that T is an isomorphism.
(2) We say that A is a submatrix of B if we have

$$
B=\left(\begin{array}{ccc}
* & * & * \\
* & A & * \\
* & * & *
\end{array}\right)
$$

where the " $*^{\prime \prime}$ can be any matrices (of the appropriate dimensions). Prove that

$$
\operatorname{rank}(\mathrm{A}) \leq \operatorname{rank}(\mathrm{B})
$$

(3) Let

$$
A=\left(\begin{array}{ccc}
1 & -2 & -1 \\
-2 & 6 & 2 \\
0 & 1 & 3 \\
3 & -4 & -2
\end{array}\right)
$$

Solve the linear system $A x=0$. Let $b=(1,0,4, k)^{T}$, and consider the system $A x=b$. Find a real number k such that the system is inconsistent, or explain why this is not possible. Find a real number k such that the system has infinitely-many solutions, or explain why this is not possible. Find a real number k such that the system has exactly one solution, or explain why this is not possible.
(4) Let the reduced row echelon form of A be

$$
\left(\begin{array}{cccccc}
1 & -3 & 0 & 4 & 0 & 5 \\
0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Determined A if the first, third, and sixth colums of A are

$$
\left(\begin{array}{c}
1 \\
-2 \\
-1 \\
3
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
2 \\
-4
\end{array}\right),\left(\begin{array}{c}
3 \\
-9 \\
2 \\
5
\end{array}\right)
$$

(5) n Let a and b be two distinct real numbers, and consider T from $P_{1}(\mathbb{R})$ to \mathbb{R}^{2} defined by $T(f(x))=(f(a), f(b))$. Show that T is linear and invertible. Given c and d, compute $T^{-1}(c, d)$.
(6) Let V and W be vector spaces. Prove that V and W are isomorphic if and only if there are bases β and γ for V and W respectively and a transformation $T: V \rightarrow W$ such that $[T]_{\beta}^{\gamma}$ is the identity matrix.
(7) Let $B=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$ and define the mapping $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}$ by $T(A)=\operatorname{trace}(A B)$. Show that T is linear and compute the rank of T. Show that $\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)$ is in the nullspace of T. Find a basis for $N(T)$ which contains this matrix.
(8) in \mathbb{R}^{2}, Let $\beta=\{(1,2),(3,4)\}$ and $\beta^{\prime}=\{(2,4),(4,6)\}$. Find the change coordinate matrix taking β^{\prime} coordinates to β coordinates.
(9) Find all solutions to the system

$$
\begin{array}{r}
x_{1}+2 x_{2}+5 x_{3}=1 \\
x_{1}-x_{2}-x_{3}=2 .
\end{array}
$$

Write down a product of elementary matrices that transforms the matrix of the system to its reduced row echelon form
(10) How many solutions can a homogeneous system of linear equations have? Give an example of a system of two equations in two variables for each case. Explain your examples briefly. You do not have to find the solutions of the systems.
(1) Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be defined by $T\left(a+b x+c x^{2}\right)=a-3 b+5 c x+(a+c) x^{2}$.. Let $\gamma=\left\{1-x^{2}, x^{2}+x,-5+4 x^{2}\right\}$. Find $[T]_{\gamma}$. Prove that T is an isomorphism.

$$
\begin{aligned}
& {[T]_{\beta} }=\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 0 & 5 \\
1 & 0 & 1
\end{array}\right] \quad[I]_{\gamma}^{\beta}=\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 0 \\
-1 & 1 & 4
\end{array}\right]=Q \\
& Q^{-1}:\left[\begin{array}{ccc|ccc}
1 & 0 & -5 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & -5 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & -5 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & +1 & -1 & +1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -4 & 5 & -5 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right] \\
& {[T]_{\gamma} }=\left[\begin{array}{ccc}
-4 & 5 & -5 \\
0 & 1 & 0 \\
-1 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 0 & 5 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 0 \\
-1 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
-29 & 32 & 125 \\
-5 & 5 & 20 \\
-6 & 7 & 26
\end{array}\right]
\end{aligned}
$$

(2) We say that A is a submatrix of B if we have

$$
B=\left(\begin{array}{lll}
* & * & * \\
* & A & * \\
* & * & *
\end{array}\right)
$$

where the " $*^{\prime \prime}$ can be any matrices (of the appropriate dimensions). Prove that

$$
\operatorname{rank}(\mathrm{A}) \leq \operatorname{rank}(\mathrm{B})
$$

Suppose A has $\operatorname{rank} r$. Suppose $\alpha_{j 1}, \alpha_{j 2}, \ldots, \alpha_{j r}$ ore independent columns in A.

Let $\beta_{k 1}, \beta_{k 2}, \ldots, \beta_{k r}$ be colums in B of the form

$$
\beta_{k l}=\left[\begin{array}{l}
u_{l} \\
\alpha_{j l} \\
v_{l}
\end{array}\right] \text { where } u_{l} \text { all } v_{l} \text { ore column vectors }
$$

of the approprote dimension. Set
$c_{1} \beta_{k_{1}}+c_{2} \beta_{k_{2}}+\ldots+c_{r} \beta_{k r}=0$. Thu it mst also be true that $c_{1} \alpha_{j 1}+c_{2} \alpha_{j 2}+\ldots+c_{v} \alpha_{j v}=0$. Since th $\alpha_{j i}$ ore indeperst, $c_{1}=c_{2}=\ldots=c_{v}=0$.
So ta $\beta_{k i}$ ore independent as well. Hence $\operatorname{vark}(B) \geq v$.
(3) Let

$$
A=\left(\begin{array}{ccc}
1 & -2 & -1 \\
-2 & 6 & 2 \\
0 & 1 & 3 \\
3 & -4 & -2
\end{array}\right)
$$

Solve the linear system $A x=0$. Let $b=(1,0,4, k)^{T}$, and consider the system $A x=b$. Find a real number k such that the system is inconsistent, or explain why this is not possible. Find a real number k such that the system has infinitely-many solutions, or explain why this is not possible. Find a real number k such that the system has exactly one solution, or explain why this is not possible.

$$
\left(\begin{array}{ccc|}
1 & -2 & -1 \\
-2 & 6 & 2 \\
0 & 1 & 3 \\
0 & 4 \\
3 & -4 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & -2 & -1 & 1 \\
0 & 2 & 0 & 2 \\
0 & 1 & 3 & 4 \\
0 & 2 & 1 & k-3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & -2 & -1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 3 & 4 \\
0 & 2 & 1 & k-3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & -1 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 3 & 3 \\
0 & 0 & 1 & k-5
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 0 & 0 & k-2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & k-8
\end{array}\right)
$$

\rightarrow The system is inconsistut if $k \neq 8$.
\rightarrow If $k=8$, we get a unique solutiong as we haw shower that $\operatorname{vank}(A)=3$, so nullity $(A)=0$. The ter solution set for $A_{x}=b$ is $K=\left\{s_{0} \xi+K_{H}\right.$ for some S_{0}.

$$
=\left\{S_{0}\right\}+\{(0,0,0)\} .
$$

\rightarrow These is no possible k the gives an infinite solution set.
4) Let the reduced row echelon form of A be

$$
\left(\begin{array}{cccccc}
1 & -3 & 0 & 4 & 0 & 5 \\
0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad 5^{4}
$$

Determined A if the first, third, and si>colums of A are

$$
\begin{gathered}
\left(\begin{array}{c}
1 \\
-2 \\
-1 \\
3
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
2 \\
-4
\end{array}\right),\left(\begin{array}{c}
3 \\
-9 \\
2 \\
5
\end{array}\right) \\
\left.\begin{array}{l}
C_{2}=-3 c_{1} \\
c_{4}=4 c_{1}+3 c_{3} \\
c_{6}=5 c_{1}+2 c_{3}-c_{5}
\end{array}\right\} \quad c_{2}=\left(\begin{array}{c}
-3 \\
6 \\
3 \\
-9
\end{array}\right) \quad c_{4}=4\left(\begin{array}{c}
1 \\
-2 \\
-1 \\
3
\end{array}\right)+3\left(\begin{array}{c}
-1 \\
1 \\
2 \\
-4
\end{array}\right)=\left(\begin{array}{c}
1 \\
-5 \\
2 \\
0
\end{array}\right) \\
c_{6}=5\left(\begin{array}{c}
1 \\
-2 \\
-1 \\
3
\end{array}\right)+\left(\begin{array}{c}
-1 \\
1 \\
2 \\
-4
\end{array}\right)-\left(\begin{array}{c}
3 \\
-9 \\
2 \\
5
\end{array}\right)=\left(\begin{array}{ccc}
1 \\
1 & -3 & -1 \\
-2 & 6 & 1 \\
-5 & -9 & 1 \\
-1 & 3 & 2 \\
3 \\
3 & -9 & 2 \\
2 & 0 & 5
\end{array}\right)
\end{gathered}
$$

$$
(3) \quad(-4) \quad(5)
$$

(5) n Let a and b be two distinct real numbers, and consider T from $P_{1}(\mathbb{R})$ to \mathbb{R}^{2} defined by $T(f(x))=(f(a), f(b))$. Show that T is linear and invertible. Given c and d, compute $T^{-1}(c, d)$.

$$
\begin{aligned}
& T\left(a_{1}+b_{1} x+\lambda\left(a_{2}+b_{2} x\right)\right)=T\left(a_{1}+\lambda a_{2}+x\left(b_{1}+\lambda b_{2}\right)\right) \\
& =\left(a_{1}+\lambda a_{2}+\left(b_{1}+\lambda b_{2}\right) a, a_{1}+\lambda a_{2}+\left(b_{1}+\lambda b_{2} b\right)\right) \\
& \left.=\left(a_{1}+b_{1} a\right)+\lambda a_{2}+\lambda b_{2} a, a_{1}+b_{1} b+\lambda a_{2}+\lambda b_{2} b\right) \\
& =\left(a_{1}+b_{1} a, a,+b_{1} b\right)+\lambda\left(a_{2}+b_{2} a, a_{2}+b_{2} b\right) \\
& =T\left(a_{1}+b_{1} x\right)+\lambda T\left(a_{2}+b_{2} x\right) .
\end{aligned}
$$

let β, γ be the stentor orel bases for $P_{1} \circ \mathbb{R}^{2}$ respectively.

$$
\begin{aligned}
& {[T]_{\beta}^{\gamma}=\left[\begin{array}{ll}
1 & a \\
1 & b
\end{array}\right]\left(\left[T-\gamma_{\beta}^{b}\right)^{-1}=\left[T^{-1}\right]_{\gamma}^{\beta}=\frac{1}{b-a}\left[\begin{array}{cc}
b & -9 \\
-1 & 1
\end{array}\right]\right.} \\
& {\left[T^{-1}\right]_{\gamma}^{\beta}\left[\begin{array}{l}
c \\
d
\end{array}\right]=\frac{1}{b-a}\left[\begin{array}{cc}
b & -a \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\frac{1}{b-a}\left[\begin{array}{c}
b c-a d \\
d-c
\end{array}\right] .}
\end{aligned}
$$

So $T^{-1}(c, d)=\frac{b c-a d}{b-a}+\left(\frac{d-c}{b-a}\right) x$.
(6) Let V and W be vector spaces. Prove that V and W are isomorphic if and only if there are bases β and γ for V and W respectively and a transformation $T: V \rightarrow W$ such that $[T]_{\beta}^{\gamma}$ is the identity matrix.
Suppose there exists such a T. hun $[T]_{\beta}^{\gamma}=I_{n}$, so T is imurtible. So $T: J \rightarrow \omega$ is an iso morphism.

Supp se U, w ore, 30 morphir. Let $\beta=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be an. order basis for V. Let $\gamma=\left\{g_{1}, g_{2}, \ldots, g_{n} \xi\right.$ be on ordered basis for W. Since $V .3$ isomorphic to W, the have th same dimension.

Define $T: V \rightarrow \omega$ by $T\left(b_{i}\right)=g_{i}$.
Hen

$$
\begin{aligned}
{[T]_{\beta}^{\gamma} } & =\left[\left[T\left(b_{1}\right)\right]_{\gamma}|\ldots|\left[T\left(b_{n}\right)\right]_{\gamma}\right] \\
& =\left[e_{1}|\ldots| e_{n}\right]=I_{n} .
\end{aligned}
$$

(7) Let $B=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$ and define the mapping $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}$ by $T(A)=\operatorname{trace}(A B)$. Show that T is linear and compute the rank of T. Show that $\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)$ is in the nullspace of T. Find a basis for $N(T)$ which contains this matrix.

$$
\begin{aligned}
\operatorname{Tr}(A B)=T_{v}\left[\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right)\right] & =\operatorname{Tr}\left(\begin{array}{cc}
-a & a+b \\
-c & c+d
\end{array}\right)=c+d-a . \\
T\left(A_{1}+\lambda A_{2}\right)=\operatorname{Tr}\left(A_{1}+\lambda A_{2}\right)(B) & =\operatorname{Tr}\left[A_{1} B+\lambda A_{2} B\right] \\
& =\operatorname{Tr}\left[A_{1} B\right]+\lambda \operatorname{Tr}\left(A_{2} B\right)=\operatorname{T}\left(A_{1}\right)+\lambda T\left(A_{2}\right) .
\end{aligned}
$$

$\operatorname{rank}(T)=1$. (It's either ar 1, ar $T\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \neq 0$, so it's 1.)

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & -1 \\
2 & -1
\end{array}\right) \in N(T) \text {, because } c+d-a=2-1-1=0 \\
& K_{A}=\left\{\left(\begin{array}{cc}
c+d & b \\
c & d
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}\right.
\end{aligned}
$$

Set $\left(\begin{array}{rr}1 & -1 \\ 2 & -1\end{array}\right)$ as the first colum wite the other columns from there.

$$
\left.\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 \\
2 & 1 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
\text { so the frat } \\
3 \\
\text { cols are } \\
\text { inkepenat }
\end{array}\left\{\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right)_{1}\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)_{1}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\} \text {. }
$$

(8) in \mathbb{R}^{2}, Let $\beta=\{(1,2),(3,4)\}$ and ${ }^{\prime} \beta^{\prime}=\{(2,4),(4,6)\}$. Find the change coordinate matrix taking β^{\prime} coordinates to β coordinates.

$$
\left[\begin{array}{ll|ll}
1 & 3 & 2 & 4 \\
2 & 4 & 4 & 6
\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}
1 & 3 & 2 & 4 \\
0 & -2 & 0 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ll|ll}
1 & 3 & 2 & 4 \\
0 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|ll}
1 & 0 & 2 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

$$
[I]_{\beta^{\prime}}^{\beta}=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]
$$

alt:

$$
\begin{aligned}
& {[I]_{\beta^{\prime}}^{\gamma}=\left[\begin{array}{ll}
2 & 4 \\
4 & 6
\end{array}\right]} \\
& {[I]_{\beta}^{\gamma}=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]}
\end{aligned}
$$

Where γ is the stordal basis.

$$
\pi[I]_{\beta^{\prime}}^{\beta}=[I]_{\gamma}^{\beta^{\prime}}[I]_{\beta}^{\gamma}
$$

check: $\begin{aligned} v & =a(2,4)+b(7,6) \& \quad[V]_{\beta}^{\prime}=\left[\begin{array}{l}a \\ b\end{array}\right] \\ & =(2 a+4 b, 4 a+66)\end{aligned}$

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
2 a+b \\
b
\end{array}\right]=[v]_{\beta}
$$

$$
\begin{aligned}
& (2 a+b)(1,2)+b(3,4) \\
& =(2 a+b+3 b, 4 a+2 b+4 b) \\
& =(2 a+4 b, 4 a+6 b)
\end{aligned}
$$

(9) Find all solutions to the system

$$
\begin{array}{r}
x_{1}+2 x_{2}+5 x_{3}=1 \\
x_{1}-x_{2}-x_{3}=2 .
\end{array}
$$

Write down a product of elementary matrices that transforms the matrix of the system to its reduced row echelon form

$$
\begin{gathered}
(A \mid b)=\left[\begin{array}{ccc|c}
1 & 2 & 5 & 1 \\
1 & -1 & -1 & 2
\end{array}\right] \xrightarrow{R_{2}-R_{1}}\left[\begin{array}{ccc|c}
1 & 2 & 5 & 1 \\
0 & -3 & -6 & 1
\end{array}\right] \\
\xrightarrow{-\frac{1}{3} R_{2}}\left[\begin{array}{lll|l}
1 & 2 & 5 & 1 \\
0 & 1 & 2 & -\frac{1}{3}
\end{array}\right] \xrightarrow{R_{1}-2 R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 1 & \frac{5}{3} \\
0 & 1 & 2 & -\frac{1}{3}
\end{array}\right]
\end{gathered}
$$

Let $x_{3}=t$

$$
\begin{aligned}
& \underset{\substack{\text { Solution } \\
\text { vector. }}}{ }\left(\begin{array}{c}
\frac{5}{3}-t \\
-\frac{1}{3}-2 t \\
t
\end{array}\right)=\left\{\left.\left(\begin{array}{c}
\frac{5}{3} \\
-\frac{1}{3} \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right) \right\rvert\, t \in F\right\} \text {. } \\
& E_{3}=R_{2}-R_{1}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \quad E_{2}=\frac{-1}{3} R_{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{3}
\end{array}\right] \quad E_{1}=R_{1}-2 R_{2}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] \\
& P=E_{1} E_{2} E_{3}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{3}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{3} & -\frac{1}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & -\frac{1}{3}
\end{array}\right] \\
& \text { Check }\left[\begin{array}{cc}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{-1}{3}
\end{array}\right]\left[\begin{array}{ccc|c}
1 & 2 & 5 & 1 \\
1 & -1 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll|c}
1 & 0 & 1 & \frac{5}{3} \\
0 & 1 & 2 & -\frac{1}{3}
\end{array}\right]
\end{aligned}
$$

(10) How many solutions can a homogeneous system of linear equations have? Give an example of a system of two equations in two variables for each case. Explain your examples briefly. You do not have to find the solutions of the systems.

Homogeneous systems are alwas corsistent. they can hove either the unique solution 0 or ∞-many solutions.

Unique:

$$
\begin{aligned}
x_{1}+x_{2} & =0 \\
x_{2} & =0
\end{aligned} \quad \infty \quad \begin{aligned}
& x_{1}+x_{2}=0 \\
& 2 x_{1}+2 x_{2}
\end{aligned}=0
$$

