To review for the midterm

- Review your notes, the text, the homework problems, and the suggested exercises in the schedule.
- Do all true false questions in the text. The exam will include a significant T / F section.
- Below is a list of topics for the exam and a sampling of questions from past exams. Review these also.
- VERY IMPORTANT. These are just questions from old exams for your practice. The questions on our exam may not be similar.

Linear transformations and matrics

- Matrix representations.
- Isomorphism and Invertibility
- Composition of linear transformations and matrix multiplication
- Computing change of coordinate matrices

Elementary Operatations and Systems of linear equations

- Know the rank of a matrix and be comfortable computing inverses using augmented matrices.
- Reduced Row Echelon form and row reduction.
- Column and row operations and multiplication by elementary matrices.
- Definition and properties of homogeneous and inhomogeneous systems and solutions.
- consistent and inconsistent systems.

Example Problems from old exams

(1) Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be defined by $T\left(a+b x+c x^{2}\right)=a-3 b+5 c x+(a+c) x^{2}$.. Let $\gamma=\left\{1-x^{2}, x^{2}+x,-5+4 x^{2}\right\}$. Find $[T]_{\gamma}$. Prove that T is an isomorphism.
(2) We say that A is a submatrix of B if we have

$$
B=\left(\begin{array}{ccc}
* & * & * \\
* & A & * \\
* & * & *
\end{array}\right)
$$

where the " $*^{\prime \prime}$ can be any matrices (of the appropriate dimensions). Prove that

$$
\operatorname{rank}(\mathrm{A}) \leq \operatorname{rank}(\mathrm{B})
$$

(3) Let

$$
A=\left(\begin{array}{ccc}
1 & -2 & -1 \\
-2 & 6 & 2 \\
0 & 1 & 3 \\
3 & -4 & -2
\end{array}\right)
$$

Solve the linear system $A x=0$. Let $b=(1,0,4, k)^{T}$, and consider the system $A x=b$. Find a real number k such that the system is inconsistent, or explain why this is not possible. Find a real number k such that the system has infinitely-many solutions, or explain why this is not possible. Find a real number k such that the system has exactly one solution, or explain why this is not possible.
(4) Let the reduced row echelon form of A be

$$
\left(\begin{array}{cccccc}
1 & -3 & 0 & 4 & 0 & 5 \\
0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Determined A if the first, third, and fifth columns of A are

$$
\left(\begin{array}{c}
1 \\
-2 \\
-1 \\
3
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
2 \\
-4
\end{array}\right),\left(\begin{array}{c}
3 \\
-9 \\
2 \\
5
\end{array}\right)
$$

(5) n Let a and b be two distinct real numbers, and consider T from $P_{1}(\mathbb{R})$ to \mathbb{R}^{2} defined by $T(f(x))=(f(a), f(b))$. Show that T is linear and invertible. Given c and d, compute $T^{-1}(c, d)$.
(6) Let V and W be vector spaces. Prove that V and W are isomorphic if and only if there are bases β and γ for V and W respectively and a transformation $T: V \rightarrow W$ such that $[T]_{\beta}^{\gamma}$ is the identity matrix.
(7) Let $B=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$ and define the mapping $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}$ by $T(A)=\operatorname{trace}(A B)$. Show that T is linear and compute the rank of T. Show that $\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)$ is in the nullspace of T. Find a basis for $N(T)$ which contains this matrix.
(8) in \mathbb{R}^{2}, Let $\beta=\{(1,2),(3,4)\}$ and $\beta^{\prime}=\{(2,4),(4,6)\}$. Find the change coordinate matrix taking β^{\prime} coordinates to β coordinates.
(9) Find all solutions to the system

$$
\begin{array}{r}
x_{1}+2 x_{2}+5 x_{3}=1 \\
x_{1}-x_{2}-x_{3}=2 .
\end{array}
$$

Write down a product of elementary matrices that transforms the matrix of the system to its reduced row echelon form
(10) How many solutions can a homogeneous system of linear equations have? Give an example of a system of two equations in two variables for each case. Explain your examples briefly. You do not have to find the solutions of the systems.

