MTH 235 Spring 2023

Midterm 2, March 28, 2023

NAME (please print legibly): _____

Your University ID Number: _____

Please circle your instructor's name: Madhu Kleene

- No notes or electronic devices are permitted during the exam.
- Full justification is required on all questions except the True/False. In particular, if you provide a counter-example, you must explain why your counter-example is appropriate.
- Please initial to indicate that you have read and understood these instructions.

PLEASE COPY THE HONOR PLEDGE AND SIGN. (Cursive is not required). I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE:_____

1. (20 points) Let
$$V = P_2(\mathbb{R})$$
. Show that $\alpha = \{-2x, 1 + x + 2x^2, -6x + 3x^2\}$ and $\gamma = \{(1 - x, 2x, 3 + x + x^2) \text{ are both bases for } P_2(\mathbb{R})$. Determine a matrix A that changes α to γ coordinates.
For d:
 $Set A = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 2 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} -2 & 1 & -6 \\ 0 & 2 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} -2 & 1 & -6 \\ 0 & 0 & 3 \end{bmatrix} = A^1$.
The vole of A^1 is 3, so the colume, or subpendent. For k ,
unders, at α over independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a
unders, at α over independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a
unders, at α over independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a
unders, at α over independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a
unders, at α over independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a
unders, α is α independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a
unders, α is α independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a
unders, α is α independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a
unders, α is α independent. Since $\dim(\mathbb{P}_2(\mathbb{R})) = 3$, α is a independent.
 $\left\{ \begin{array}{c} -1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 2 & 3 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 3 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 1 & 0 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 1 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 & 0 \\ 0 & 0 \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 &$

2. (20 points) Let $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ denote the transformation given by

$$T(f) = \begin{pmatrix} f(1) & f(-1) \\ f(0) & -f(1) \end{pmatrix}.$$

Show that T is an isomorphism on to the subspace of trace zero 2×2 matrices and compute

 $[T]^{\gamma}_{\beta} \text{ where } \beta = \{1, x, x^2\} \text{ is the standard basis of } P_2(\mathbb{R}) \text{ and } \gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$

To show T is an iso map
Let
$$f(x) = a + bx + cx^2$$
.
 $f(i) = a + b + c$. If $T(x) = 0$, the $f(i) = -f(i)$, so $a + b + c = 0$.
If $f(o) = 0$, the $a = 0$.
If $f(c) = 0$, the $c - b = 0$. We have $b + c = b - c$, so $b = c = 0$.
If $f(c) = 0$, the $c - b = 0$. We have $b + c = b - c$, so $b = c = 0$.
The T has twinked kernel, so T is on-two ore. Since the dimension
of the truce zero $2x^2$ metrice is 3, and $dm(P_2) = 5$, T is
both ore-to-one and ants.
For the motation:
 $T(x) = \begin{pmatrix} 1 & 1 \\ 1 - i \end{pmatrix} = \begin{pmatrix} 10 \\ 0 - i \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, so $[T(x)]k = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
 $T(x^2) = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 - 1 \end{pmatrix} + \begin{pmatrix} 01 \\ 0 & 0 \end{pmatrix}$, so $[T(x)]k = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
The $[T_1]_k^6 = \begin{bmatrix} 1 & 1 \\ 1 - i \\ 1 & 0 \end{bmatrix}$.

3. (20 points)

Let
$$A = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$
.

- (a) Find elementary matrices E_1, E_2 such that the product $E_1E_2A = I_2$. Determine A^{-1} .
- (b) Find a transformation $T : \mathbb{R}^2 \to P_1(\mathbb{R})$ such that $[T]^{\gamma}_{\beta} = A$, where $\beta = \{e_1, e_2\}$ and $\gamma = \{1, x\}$. Find a transformation $U : P_1(\mathbb{R}) \to \mathbb{R}^2$ such that $U = T^{-1}$.

$$\begin{array}{l} (1) \left[\begin{array}{c} 1 & -2 \\ -1 & 3 \end{array} \right] \frac{P_{+}P_{2} \Rightarrow P_{2}}{9} \left[\begin{array}{c} 1 & -2 \\ 0 & 1 \end{array} \right] \frac{P_{+}P_{2} \Rightarrow P_{2}}{9} \left[\begin{array}{c} 1 & -2 \\ 0 & 1 \end{array} \right] \frac{P_{+}P_{2} \Rightarrow P_{2}}{9} \left[\begin{array}{c} 1 & 0 \\ 0 & 0 \end{array} \right] \\ \left[\begin{array}{c} 1 & 2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & 2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & 2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & 2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & 2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & 2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & -2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & -2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & -2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & -2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 & -2 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{c} 1 & -2 \\ 1 & 1 \end{array} \right] \\ \left[\begin{array}{c} 1 & -2 \\ -1 & 3 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ 0 & -2 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ -1 & 3 \end{array} \right] \\ \left[\begin{array}{c} 1 & -2 \\ -1 & 3 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ 0 & -2 \end{array} \right] = \left[\begin{array}{c} -2 \\ 3 \end{array} \right] \\ \left[\begin{array}{c} 1 & -2 \\ -1 & 3 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ 0 & -2 \end{array} \right] \\ \left[\begin{array}{c} 1 & -2 \\ -1 & 3 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ 0 & -2 \end{array} \right] \\ \left[\begin{array}{c} 1 & -2 \\ -1 & 3 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ 0 & -2 \end{array} \right] \\ \left[\begin{array}{c} 1 & -2 \\ -1 & 3 \end{array} \right] \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \end{array} \right] \\ \left[\begin{array}{c} 0 & -2 \\ -1 & -2 \end{array} \right$$

4. (20 points)

Suppose a matrix A has reduced row echelon form B, where

$$B = \begin{bmatrix} 0 & 1 & -3 & 0 & 2 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Suppose columns 1, 2 and 4 of A are as follows:

$$c_1 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, c_2 = \begin{bmatrix} -2\\5\\1 \end{bmatrix}, c_4 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Determine A. Determine the rank of A and the dimension of its nullspace. (This question continues on the next page.) C = C + C + -C

(a) To determine A:
To B,
$$c_3 = -3C_2$$

 $(5 = 2c_2 - 2C_4)$
Thun in A $(z_3 = -3) \begin{pmatrix} -2 & 6 & 1 - 6 \\ 0 & 5 & -15 & 1 & 8 \\ 0 & 1 & -3 & 1 & 0 \end{pmatrix}$
 $T_{2} = 2c_2 - 2C_4$
 $T_{2} = 2$

(b) Find a basis for the nullspace of A.

(c) Find the solution set of the linear system Ax = b, where $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

(b)

$$B = \begin{bmatrix} 0 & 1 & -3 & 0 & 2 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{k_{1}} \begin{bmatrix} \chi_{1} g_{1} \chi_{1}^{n} + 2 \pi g_{2} - 3 g_{3} + 2 \xi = 0 \\ \chi_{1} g_{2} - 3 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 3 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{3} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{3} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{3} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{3} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{3} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{3} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{3} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{3} - 2 \xi = 0 \\ \chi_{2} g_{3} - 2 \xi = 0 \\ \chi_{1} g_{2} - 2 \xi = 0 \\ \chi_{1}$$

5. (20 points) True of False. You do not need to justify your answers. No partial credit will be awarded.

- 1. (2pts) If A, B are matrices such that AB is defined and AB = I, then $B = A^{-1}$. True \Box False \Box' Only true if A, B are syname.
- 2. (2pts) The solution set of a system of linear equations in n unknowns is a subspace of \mathbb{R}^n .

```
True I False & True it homogeneous.
```

- 4. (2pts) If dim $V = \dim W$ there exists a unique isomorphism $\phi : V \to W$. True \Box False \boxtimes The source is not integrated.
- 5. (2pts) If A is a 2×5 matrix and B is a a 5×2 matrix, then AB can have rank 5. True \Box False \boxtimes $rowe (AB) \leq 2$.

6. (2pts) There exists a 2×2 system of linear equations over \mathbb{R} such that the solution set is $S = \{(1,0), (0,1)\}$.

		It is possible to the is in it,	
True \Box	False	ore solution, or a -maky.	

- 7. (8 pts) True of False: For each of the following, decide if the statement is true or false. In each part, T is a linear operator on a finite dimensional vector space V, $\beta = \{\beta_1, \beta_2, \ldots, \beta_n\}$ and $\alpha = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ are both ordered bases for V, and Q is the change of coordinates matrix that changes β coordinates into α coordinates.
 - (a) $Q = [I_V]^{\beta}_{\alpha}$. True \Box False Ξ
 - (b) The *j*th column of Q is $[\beta_j]_{\alpha}$. True 云 False \Box
 - (c) Q^{-1} necessarily exists and it is the change of coordinates matrix from β to α coordinates.

True 🗆 False 🖾

(d) $[T]_{\beta}$ and $[T]_{\alpha}$ are similar matrices. True \bowtie False \Box