MTH 235 Spring 2023

Midterm 2, March 28, 2023

NAME (please print legibly): \qquad

Your University ID Number:

\qquad

Please circle your instructor's name: Madhu Kleene

- No notes or electronic devices are permitted during the exam.
- Full justification is required on all questions except the True/False. In particular, if you provide a counter-example, you must explain why your counter-example is appropriate.
- Please initial to indicate that you have read and understood these instructions.

PLEASE COPY THE HONOR PLEDGE AND SIGN. (Cursive is not required).
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

1. (20 points) Let $V=P_{2}(\mathbb{R})$. Show that $\alpha=\left\{-2 x, 1+x+2 x^{2},-6 x+3 x^{2}\right\}$ and $\gamma=\left\{\left(1-x, 2 x, 3+x+x^{2}\right\}\right.$ are both bases for $P_{2}(\mathbb{R})$. Determine a matrix A that changes α to γ coordinates.
For α :

$$
\begin{aligned}
& \alpha \text { to } \gamma \text { coordinates. } \\
& \operatorname{Set} A
\end{aligned}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-2 & 1 & -6 \\
0 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
-2 & 1 & -6 \\
0 & 1 & 0 \\
0 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
-2 & 1 & -6 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right]=A^{\prime}
$$

The rank of A^{\prime} is 3 , s, the colums, are irdipendunt. Ter the vectors of α ore indpendet. Since $\operatorname{div}\left(P_{2}(R)\right)=3, \alpha$ is a basis.
For $\gamma: S+B=\left[\begin{array}{ccc}1 & 0 & 3 \\ -1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 1\end{array}\right]=B^{\prime}$. He rale of B^{\prime} is 3 as well, so γ is also a basis.

Solution (A): Reduce (B|A) to (I $\mid B^{-1} A$).

$$
\begin{gathered}
\text { Solution } A: \text { Reduce }(B \mid A) \text { to }\left(I \mid B^{-1} A\right) . \\
{\left[\begin{array}{rrr|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
-1 & 2 & 1 & -2 & 1 & -6 \\
0 & 0 & 1 & 0 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 2 & 4 & -2 & 2 & -6 \\
0 & 0 & 1 & 0 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & -1 & 1 & -3 \\
0 & 0 & 1 & 0 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & -5 & -9 \\
0 & 1 & 0 & -1 & -3 & -9 \\
0 & 0 & 1 & 0 & 2 & 3
\end{array}\right]}
\end{gathered}
$$

So $\left[I_{P_{2}(\mathbb{R}}\right]_{\alpha}^{\gamma}=\left[\begin{array}{rrr}0 & -5 & -9 \\ -1 & -3 & -9 \\ 0 & 2 & 3\end{array}\right]$.
Solution (B) $\left[I_{P_{2}(R)_{\alpha}}^{\gamma}=\left[I_{P_{2}(R)}\right]_{\beta}^{\gamma}\left[I_{P_{2}(D)}^{\beta}\right]_{\alpha}^{\beta \text { where } \beta \text { order basis. }}\right.$
That is, $[I]_{\alpha}^{\gamma}=B^{-1} A$. we determine B^{-1}.

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 0 & 3 & 1 & 0 & 0 \\
-1 & 2 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & 2 & 4 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & -3 \\
0 & 2 & 0 & 1 & 1 & -4 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & -3 \\
0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& B^{-1} A=\left[\begin{array}{ccc}
1 & 0 & -3 \\
\frac{1}{2} & \frac{1}{2} & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
-2 & 1 & -6 \\
0 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
0 & -5 & -9 \\
-1 & -3 & -9 \\
0 & 2 & 3
\end{array}\right]
\end{aligned}
$$

Solution (C):

$$
\begin{aligned}
& -2 x=O(1-x)-2 x+O\left(3+x+x^{2}\right) \text { : colum } 1=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right) \\
& 1+x+2 x^{2}=-5(1-x)-3(2 x)+2\left(3+x+x^{2}\right): \text { column- } 2=\left(\begin{array}{c}
-5 \\
3 \\
2
\end{array}\right) \\
& -6 x+3 x^{2}=-9(1-x)-9(2 x)+3\left(3+x+x^{2}\right): \text { colum } 3=\left(\begin{array}{c}
-9 \\
-9 \\
3
\end{array}\right)
\end{aligned}
$$

2. (20 points) Let $T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ denote the transformation given by

$$
T(f)=\left(\begin{array}{cc}
f(1) & f(-1) \\
f(0) & -f(1)
\end{array}\right)
$$

Show that T is an isomorphism on to the subspace of trace zero 2×2 matrices and compute $[T]_{\beta}^{\gamma}$ where $\beta=\left\{1, x, x^{2}\right\}$ is the standard basis of $P_{2}(\mathbb{R})$ and $\gamma=\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\}$

To show T is an iso more

$$
\text { Let } f(x)=a+b x+c x^{2}
$$

$f(1)=a+b+c$. If $T(f)=0$, then $f(1)=-f(1)$, so $a+b+c=0$.
If $f(0)=0$, the $a=0$.
If $f(-1)=0$, then $c-b=0$. We han $b+c=b-c$, so $b=c=0$.
Tun T has trivial kernel, so T is on-tr-ore. Since th diversion of the trace zero 2×2 matrices is 3 , al $\operatorname{din}\left(P_{2}\right)=3, T$ is both ore-to-ore ave onto.

For the matrix:

$$
\begin{aligned}
& \text { both ore-to-ore are onto. } \\
& \text { For the matrix: } \\
& T(1)=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \text {, so }\left[\left(\begin{array}{l}
1
\end{array}\right)\right]_{\gamma}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& T(x)=\left(\begin{array}{rr}
1 & -1 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text {, so }[T(x)]_{\gamma}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] . \\
& T\left(x^{2}\right)=\left(\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text {, so }\left[T\left(x^{2}\right)\right]_{\gamma}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
\end{aligned}
$$

$$
\operatorname{tm}[T]_{\beta}^{\gamma}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

3. (20 points)

Let $A=\left[\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right]$.
(a) Find elementary matrices E_{1}, E_{2} such that the product $E_{1} E_{2} A=I_{2}$. Determine A^{-1}.
(b) Find a transformation $T: \mathbb{R}^{2} \rightarrow P_{1}(\mathbb{R})$ such that $[T]_{\beta}^{\gamma}=A$, where $\beta=\left\{e_{1}, e_{2}\right\}$ and $\gamma=\{1, x\}$. Find a transformation $U: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ such that $U=T^{-1}$.
a.)

$$
\text { b.) Since }\left[\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

$$
\begin{aligned}
& T\left(e_{1}\right)=1-x \\
& {\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-2 \\
3
\end{array}\right]}
\end{aligned}
$$

$$
T\left(e_{2}\right)=-2+3 x
$$

Since $\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right], \quad u(1)=(3,1)$

$$
\left[\begin{array}{ll}
12 & 2
\end{array} \sum_{i}\right]=[2], u(x)=(2, x)
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right] \xrightarrow[\downarrow]{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] \xrightarrow{\substack{R_{1}+2 R_{2} \rightarrow R_{1}}}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]} \\
& E_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad E_{1}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]=I_{2} \text {, so } A^{-1}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

4. (20 points)

Suppose a matrix A has reduced row echelon form B, where

$$
B=\left[\begin{array}{ccccc}
0 & 1 & -3 & 0 & 2 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Suppose columns 1, 2 and 4 of A are as follows:

$$
c_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], c_{2}=\left[\begin{array}{c}
-2 \\
5 \\
1
\end{array}\right], c_{4}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Determine A. Determine the rank of A and the dimension of its nullspace. (This question continues on the next page.)
(a) determine A :
In $B, \quad c_{3}=-3 C_{2}$
$A=\left[\begin{array}{ccc:c}0 & -2 & 6 & 1 \\ 0 & 5 & -6 & 1 \\ 0 & 1 & -3 & 1 \\ 0 & 1 & & \end{array}\right]$
$\begin{array}{rlrl}C_{5}=2 C_{2} & -2 C_{4} & \\ C_{3} & =-3\left(\begin{array}{c}-2 \\ 5 \\ 1\end{array}\right)=\left[\begin{array}{c}6 \\ -15 \\ -3\end{array}\right] & & \operatorname{rank}(A)=2 \\ C_{5} & =2\left(\begin{array}{c}-2 \\ 5 \\ 1\end{array}\right)-2\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}-6 \\ 8 \\ 0\end{array}\right] & \text { nullity }(A)=5-2=3\end{array}$
(b) Find a basis for the nullspace of A.
(c) Find the solution set of the linear system $A x=b$, where $b=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(b)

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & -3 & 0 & 2
\end{array}\right] \quad{ }^{2} x_{2} \frac{x_{1}}{3} x_{2}^{2}+2 x_{5}-x_{z}-3 s+2 t=0} \\
& \begin{array}{l}
x_{3}=2 x_{5}=0
\end{array} \\
& x_{4}-2 t=0
\end{aligned}
$$

Aspanniz set for tan innllapace A ' es $=$ column 3 or A

 Solution.
So

$$
K=\left\{\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)\right\}+\operatorname{son}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-2 \\
0 \\
2 \\
1
\end{array}\right)\right\}
$$

5. (20 points) True of False. You do not need to justify your answers. No partial credit will be awarded.
6. (2pts) If A, B are matrices such that $A B$ is defined and $A B=I$, then $B=A^{-1}$.

True \square False \mathbb{V} Only true if A, B are sincere.
2. (2pts) The solution set of a system of linear equations in n unknowns is a subspace of \mathbb{R}^{n}.
True $\square \quad$ False \boxtimes True if homogeneous.
3. (2pts) A matrix and its reduced row echelon form have the same nullspace.

True \boxtimes False \square
4. (2pts) If $\operatorname{dim} V=\operatorname{dim} W$ there exists a unique isomorphism $\phi: V \rightarrow W$.

True \square
False Th somophise is not enigu.
5. (2pts) If A is a 2×5 matrix and B is a a 5×2 matrix, then $A B$ can have rank 5 . True $\square \quad$ False \boxtimes rowe $(A B) \leq 2$.
6. (2pts) There exists a 2×2 system of linear equations over \mathbb{R} such that the solution set is $S=\{(1,0),(0,1)\}$.

True \qquad False 区

$$
\begin{gathered}
\text { It is possible to hae no solutions, } \\
\text { ore solution, or } \infty \text {-many. }
\end{gathered}
$$

7. (8 pts) True of False: For each of the following, decide if the statement is true or false. In each part, T is a linear operator on a finite dimensional vector space V, $\beta=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ and $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ are both ordered bases for V, and Q is the change of coordinates matrix that changes β coordinates into α coordinates.
(a) $Q=\left[I_{V}\right]_{\alpha}^{\beta}$.

True \square
False $\underset{\chi}{ }$
(b) The j th column of Q is $\left[\beta_{j}\right]_{\alpha}$.

True \Varangle
False
(c) Q^{-1} necessarily exists and it is the change of coordinates matrix from β to α coordinates.
True $\square \quad$ False \boxtimes
(d) $[T]_{\beta}$ and $[T]_{\alpha}$ are similar matrices. True $\not \subset$ False

