MTH 235

Midterm 1 February 27, 2024

Solutions Name:

Student ID:

(If you do not know your SID, provide your netid.)

The Department of Mathematics adheres to the university's academic honesty policy. In addition, the following restrictions apply to this exam:

- 1. No phones, calculators or any other devices that could help you answer any part of this exam are permitted.
- 2. No notes or formula sheets or similar documents are permitted.

PLEASE COPY THE HONOR PLEDGE AND SIGN:

(Cursive is not required).

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE:

1. (20 points) Answer each question T for true or F for false. You do not have to justify your answer.

IMPORTANT: The T/F will be graded as follows: You will get 2 pts for a correct response. You will get 0 points for no response. You will get -.25 pts for an incorrect response. (You will get a minimum of zero for this question-no negatives.)

1. The following subset S of $P_2(\mathbb{R})$ is linearly independent:

$$S = \{x^2 - 1, x + 11, -7x, 5 - x\}.$$

True
$$d.m(P_Z(R)) = 3.$$

False

□ No response

2. The following set S is a spanning set for $P_3(\mathbb{R})$:

$$S = \{x^3 - 5, 4x, 3 - 6x\}$$

 \Box True

🕱 False

- d_{im} $(P_3(TP)) = 4$.
- \Box No response
- 3. The following set W is subspace of \mathbb{R}^4 .

- 4. If W_1 and W_2 are subspaces of a vector space V, then $W_1 \cap W_2$ is also a subspace of V.
 - Image: True $\mu \omega \ \underline{1} \cdot$ \Box False
 - □ No response

5. A subset W of a vector space V is a subspace of V if and only if Span(W) = W.

- True If gran(w) = w, then w is the gran at a set, so a gubspace.
 □ False If w is a subspace, it contains the span of a little subspace, it contains the span of a little subspace, it contains the span of a little subspace. So span (w) ≤ w. Suce w ≤ spin(w), we have equality.
- 6. If S a linearly independent subset of a vector space V, then every subset of Span(S) is also linearly independent.
 - \Box True
 - ₩ False
 - $\hfill\square$ No response
- 7. The set of real numbers, \mathbb{R} , is a vector space over \mathbb{R} of dimension 1.
 - 🛛 True
 - \Box False
 - $\hfill\square$ No response
- 8. If W is the set of matrices $A \in M_{2\times 2}(\mathbb{R})$ such that $A^2 = A$, then W is a subspace of $M_{2\times 2}(\mathbb{R})$.

	This set	is not closed	under	addition
□ True	or Scalor	multiplication.		
🛛 False				

- $\hfill\square$ No response
- 9. Every subset of a linearly independent set must be linearly independent.
 - ☑ True
 - \Box False
 - \Box No response
- 10. Let S be a subset of a vector space V with $\dim(V) = n$. If S generates V, then S must contain at least n vectors.

🛛 True

- \Box False
- $\hfill\square$ No response

2. (20 points)

(a) Let $T: V \to V$ be a linear transformation on a vector space V. Let $W = \{v \in V \mid T(v) = 2v\}$. Show that W is a subspace of V.

(b) Let V be a vector space and $x, y \in V$. Show that the span of $\{x, x + y\}$ is equal to the span of $\{x, y\}$.

Since X, X+J are both contained in spor Exiy3, and Spor Exiy3 is a subspace, spon Exix+y3 = spon Exiy3. Since y = X+y-X, Exiy3 = spon Exix+y3. So spon Exiy3 = spon Exix+y3. So where equility.

3. (20 points)

-

(a) Let V be a vector space, and let $T: V \longrightarrow V$ be a linear transformation. Show that if $N(T) = \{0\}$, then $N(T^2) = \{0\}$.

Suppose that
$$\lambda(t) = 403$$

and suppose that
 $v \in N(t^{3})$. Then $t^{2}(v) = 0$
So $T(t(v)) = 0$ so
 $T(v) = 0$ (Since $\lambda(t) = 403$)
 $40 = 0$ (Since $\lambda(t) = 403$)

(b) Let $T: P_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ be a linear transformation. Show that if T(1+x) = 0, then R(T) cannot be all of \mathbb{R}^3 .

$$TF T (x+1) = 0, Hc,$$

$$N (T) \neq 403,$$

$$50 d (m N (T) Z)$$

$$By Ronk - N (1) + 7,$$

$$Jm R (T) + d (m N (T) = 3,$$

$$5n (c) d (m P_2 (fR)) = 3$$

$$50 d (m R (T) \leq 2 \times d (m R)^3$$

$$50 R (T) \neq 1R^3$$

4. (10 points) Let
$$T: P_3(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$
 be given by $T(f) = \begin{bmatrix} f''(1) & 0 \\ 0 & f(0) \end{bmatrix}$.

- (a) Determine a basis for the nullspace of T.
- (b) Determine a subset S of $P_3(\mathbb{R})$ such that T(S) is a basis for the range of T.

(4)
$$N(T) = \sum_{k=1}^{\infty} f \in P_3(\mathbb{R}) | f''(1) = 0 \text{ a.t. } f(0) = 0^3.$$

Let $f(x) = a + bx + cx^2 + dx^3.$
 $f'(x) = b + 2cx + 3dx^2$
 $f''(x) = 2c + 6dx$
 $f''(1) = 2c + 6d.$
Thun, if $f \in N(T)$, $A = 0$ a.l. $c = -3d.$
So $f(x)$ has the form $bx - 3dx^2 + dx^3$
 $= 3pax \sum_{k=1}^{\infty} x_k^3 - 3x^2 3.$
As $x_1 x_2^3 - 3x^2 3$ are not solve multiples of one another,
 $\sum_{k=1}^{\infty} x_1 x_2^3 - 3x^2 3$ is a basis for $N(T)$.

(b). We can extend
$$\xi_{\chi_1} \chi^3 - 3\chi^2 = 3$$
 to a basis for $P_3(\mathbb{P})$.
One such basis would be $\beta = \xi_{\chi_1} \chi^3 - 3\chi^2, \chi^2, 1 = 3$.
Then $S = \xi_{1,\chi^2} \leq S_{atis} fies$ (b). To confirm,
 $T(i) = \begin{pmatrix} 0 & 0 \\ 0 & i \end{pmatrix}$ of $T(\chi^2) = \begin{cases} 2 & 0 \\ 0 & 0 \end{cases}$.

★ Since T(B) always good R(T), all since X, X³-3x² ∈ N(T),
the T(S) must span R(T). See the proof of the rankNullity theorem.

Page 9 of 12

(blank page for work on Problem 4)

5. (10 points)

Let $V = \mathbb{R}_{>0}$ be the set of strictly positive real numbers, and define a vector addition \boxplus and scalar multiplication \boxdot on V as follows:

- For u and v in V, let $u \boxplus v = uv$.
- For u in V and c in \mathbb{R} , let $c \boxdot u = u^{2c}$.

Provide an example to show that V is not a vector space. (Be sure to use the appropriate symbols \boxplus and \boxdot where needed.)

Note: IR, o with the same addition and multiplication defined as City = uf is a veter space, and we have used it in the homework sets. Since only multiplication has charged for this set, NSI thigh NSY will hold.

$$VS7 \text{ also holds:}$$

 $a \Box (X By) = (Xy)^{2a} = X^{2a} y^{2a} = a \Box X B a \Box y$

USB holds as well. (a+s) = x²(a+b) = x²x²b = a = x = b = x. A ths is an addition of scales.

6. (20 points)

(a) Let U and W be two dimensional subspaces of \mathbb{R}^3 . Show that if $U \neq W$, then $U + W = \mathbb{R}^3$.

Here is one way. If
$$U \neq W$$

then there is a $U \notin U \leq U \leq U$
that $U \notin W \leq Since$ we cannot
have $U \leq W \notin U \neq W$ because
dim $U = dim W$. Then $U \neq W$
contains W but is larger than
 $W_{2} \leq S_{2} \leq U \leq W \leq U$
 $U \leq W \leq U \leq W \leq U$
 $U \leq W \leq U \leq W \leq U$
 $U \leq W \leq U \leq W \leq U$
 $U \leq W \leq U \leq W \leq U$
 $U \leq W \leq U \leq W \leq U$
 $U \leq W \leq U \leq W \leq U$
 $W \leq W \leq W \leq U$
 $W \leq W \leq W \leq U$

Loome W: & Goen (44, 423) but then Mu, 42, W: 3 is lin, indep so le bossis for the (b) Show that $U \cap W \neq \{0\}$.

If
$$U \cap W = 400$$
, then
 $U + W = U \oplus W$ and
 $d \in (U + W) = d \in (U) + d \in (W)$
us proved on HW. But then
 $d \in (U + W) = 473$, a contradiction
to $U \cap W \neq 400$.

Another wey:
$$4u_1, u_2 3$$
 bestis for V
end $4w_1, w_2 3$ bestis for V.
 $4u_1, u_2 3$ bestis for W.
 $4u_1, u_2, w_1, w_3 3$ is dependent
 $50 \quad 0_1 u_1 + u_2 u_2 + u_3 u_1 + u_4 w_3 = 0$
 $50 \quad nc \quad u_1 + u_2 u_2 = - (u_3 w_1 + u_4 w_3)$
is $\pm 0 \quad 0_1 d_1 + u_2 u_3 = - (u_3 w_1 + u_4 w_3)$