MTH 235

Midterm 1

February 27, 2024

Name:

Student ID:

(If you do not know your SID, provide your netid.)

The Department of Mathematics adheres to the university's academic honesty policy. In addition, the following restrictions apply to this exam:

1. No phones, calculators or any other devices that could help you answer any part of this exam are permitted.
2. No notes or formula sheets or similar documents are permitted.

PLEASE COPY THE HONOR PLEDGE AND SIGN:
(Cursive is not required).
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.
\qquad

1. (20 points) Answer each question T for true or F for false. You do not have to justify your answer.

IMPORTANT: The T/F will be graded as follows: You will get 2 pts for a correct response. You will get 0 points for no response. You will get -.25 pts for an incorrect response. (You will get a minimum of zero for this question-no negatives.)

1. The following subset S of $P_{2}(\mathbb{R})$ is linearly independent:

$$
S=\left\{x^{2}-1, x+11,-7 x, 5-x\right\}
$$

\square True $\operatorname{dim}\left(P_{2}(R)\right)=3$.
$\not \subset$ False
No response
2. The following set S is a spanning set for $P_{3}(\mathbb{R})$:

$$
S=\left\{x^{3}-5,4 x, 3-6 x\right\}
$$

\square True
$\boxed{*}$ False

$$
\operatorname{dim}\left(P_{3}(\mathbb{R})\right)=4
$$No response

3. The following set W is subspace of \mathbb{R}^{4}.

$$
W=\operatorname{Span}(\{(1,1,1,1),(1,-1,2,7),(5,4,3,1)\})
$$

FalseNo response
4. If W_{1} and W_{2} are subspaces of a vector space V, then $W_{1} \cap W_{2}$ is also a subspace of V.
\pm True
HO 1.FalseNo response
5. A subset W of a vector space V is a subspace of V if and only if $\operatorname{Span}(W)=W$.

$$
\begin{aligned}
& * \text { True If } \operatorname{spca}(\omega)=\omega \text {, then } \omega \text { is the span of a set, so a } \\
& \text { gulospace. } \\
& \text { False }
\end{aligned}
$$

we have equality.
6. If S a linearly independent subset of a vector space V, then every subset of $\operatorname{Span}(S)$ is also linearly independent.True
© FalseNo response
7. The set of real numbers, \mathbb{R}, is a vector space over \mathbb{R} of dimension 1 .
\pm TrueFalseNo response
8. If W is the set of matrices $A \in M_{2 \times 2}(\mathbb{R})$ such that $A^{2}=A$, then W is a subspace of $M_{2 \times 2}(\mathbb{R})$.True

© FalseNo response
9. Every subset of a linearly independent set must be linearly independent.

区 TrueFalseNo response
10. Let S be a subset of a vector space V with $\operatorname{dim}(V)=n$. If S generates V, then S must contain at least n vectors.

区 TrueFalseNo response
2. (20 points)
(a) Let $T: V \rightarrow V$ be a linear transformation on a vector space V. Let $W=\{v \in V \mid T(v)=$ $2 v\}$. Show that W is a subspace of V.

$$
T(\overrightarrow{0})=\overrightarrow{0}=2 \overrightarrow{0} \text {, so } \quad \overrightarrow{0} \in \omega
$$

Suppose $x, y \in \omega$. Then $T(x+y)=T(x)+T(y)=2 x+2 y=2(x+y)$.
so W is closed uncher vector addition. Suppose $x \in \omega$ our $\lambda \in \mathbb{F}$. the $T(\lambda \omega)=\lambda T(\omega)=\lambda(2 \omega)=Z(\lambda \omega)$.

So w is closed under scales multiplication.
Hence ω is a subspace.
(b) Let V be a vector space and $x, y \in V$. Show that the span of $\{x, x+y\}$ is equal to the span of $\{x, y\}$.
Since $x, x+y$ are both contend in $\operatorname{spor}\{x, y\}$, and
spar $\{x, y\}$ is a subspace, span $\{x, x+y\} \leq$ spar $\{x, y\}$. Since $y=x+y-x,\left\{x_{c y}\right\} \leq \operatorname{span}\{x, x+y\}$. So span $\{x, y\} \leq \operatorname{son}\{x, x+y\}$. So we ar equality.
3. (20 points)
(a) Let V be a vector space, and let $T: V \longrightarrow V$ be a linear transformation. Show that if
$N(T)=\{0\}$, then $N\left(T^{2}\right)=\{0\}$.
Suppose that $X(T)=$ kO 3
and suppose the et

$$
v \in N\left(T^{2}\right) \text {. Then } T^{2}(v)=0
$$

so $T(T(v))=0$ so

$$
T(u)=0 \quad(\sin c c \quad N(T)>\{0\})
$$

so $v=0$ (since $N(T)=4031$

Midterm 1, Math 235	February 27, 2024	Page 7 of 12

(b) Let $T: P_{2}(\mathbb{R}) \longrightarrow \mathbb{R}^{3}$ be a linear transformation. Show that if $T(1+x)=0$, then $R(T)$
cannot be all of \mathbb{R}^{3}.
If $T(x+1)=0$, than

$$
N(T) \neq k 03,
$$

so dion $N(T) \geq 1$
By $R a n k$ - nullity,

$$
\operatorname{dim} R(T)+\operatorname{dim} N(T)=3 .
$$

since $\operatorname{dim} P_{2}(\mathbb{R})=3$
So $\operatorname{dim} R(T) \leq 2 \times \operatorname{dim} \mathbb{R}^{3}$
so $R(T) \neq \mathbb{R}^{3}$
4. (10 points) Let $T: P_{3}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be given by $T(f)=\left[\begin{array}{cc}f^{\prime \prime}(1) & 0 \\ 0 & f(0)\end{array}\right]$.
(a) Determine a basis for the nullspace of T.
(b) Determine a subset S of $P_{3}(\mathbb{R})$ such that $T(S)$ is a basis for the range of T.
(4) $N(T)=\left\{f \in P_{3}(\mathbb{R}) \mid f^{\prime \prime}(1)=0\right.$ ass $\left.f(0)=0\right\}$.

Let $f(x)=a+b x+c x^{2}+d x^{3}$.

$$
\begin{aligned}
& f^{\prime}(x)=b+2 c x+3 d x^{2} \\
& f^{\prime \prime}(x)=2 c+6 d x \\
& f^{\prime \prime}(1)=2 c+6 d
\end{aligned}
$$

Then, if $f \in N(T), a=0$ ae d $c=-3 d$.
So $f(x)$ has ta form $b x-3 d x^{2}+d x^{3}$

$$
=\operatorname{spar}\left\{x, x^{3}-3 x^{2}\right\}
$$

As $x, x^{3}-3 x^{2}$ are not scaler multiples of one another, $\left\{x, x^{3}-3 x^{2}\right\}$ is a basis for $N(T)$.
(b). We cav extend $\left\{x_{1} x^{3}-3 x^{2}\right\}$ to a basis fo $P_{3}(\mathbb{R})$.

One such bass would be $\beta=\left\{x, x^{3}-3 x^{2}, x^{2}, 1\right\}$.
Then $S=\left\{1, x^{2}\right\}$ satisfies (b). To confirm,

$$
T(1)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \text { of } T\left(x^{2}\right)=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] .
$$

* Since $T(\beta)$ always spars $R(T)$, are since $x_{1} x^{3}-3 x^{2} \in N(T)$, the $T(S)$ mast span $R(T)$. See the proof of the ranknullity theorem.
(blank page for work on Problem 4)

5. (10 points)

Let $V=\mathbb{R}_{>0}$ be the set of strictly positive real numbers, and define a vector addition \boxplus and scalar multiplication \square on V as follows:

- For u and v in V, let $u \boxplus v=u v$.
- For u in V and c in \mathbb{R}, let $c \square u=u^{2 c}$.

Provide an example to show that V is not a vector space. (Be sure to use the appropriate symbols \boxplus and \square where needed.)
(1) The unit property does not hold for V. Let $x \in V$. $\| \cap x=x^{2}$. Specifically, let $x=2$. the 1 ® $2=4 \neq 2$.
(2) USG also fails.

$$
\begin{aligned}
& \text { (ab) } 0 x=x^{2 a b} \\
& a \circlearrowleft(b \square x)=a \square x^{2 b}=x^{4 a b} \\
& \text { Specifically, }(2 \cdot 3) \cdot 4=4^{12} \text { ane } 20(304)=\left(4^{6}\right)^{4}=4^{24}
\end{aligned}
$$

Note: $\mathbb{R}_{>0}$ with th save addition and multiplication definal as $c \square u=U^{c}$ is a veto space, and we hume used it in to homework sets. Since only multplization has chayed for this set, vii thigh usu will hold.

V57 also holds:

$$
\operatorname{a} \sigma(x \boxplus y)=(x y)^{2 a}=x^{2 a} y^{2 a}=a 叩 x \boxplus a \square y
$$

V38 holds as well.

$$
\begin{aligned}
& \text { ids as well. } \\
& (a+b) 0 x=x^{2(a+b)}=x^{2 a} x^{2 b}=a \square x \boxplus b \square x .
\end{aligned}
$$

$4_{\text {the is an addition of scatters. }}$

6．（20 points）
（a）Let U and W be two dimensional subspaces of \mathbb{R}^{3} ．Show that if $U \neq W$ ，then $U+W=$

Herd is one way．If $u \neq W$ then there is a $u \in U$ such that $u \notin W)$ since wc cannot have UGW it U半w because $\operatorname{dim} U=\operatorname{dim} W$ ．Than $U+W$ contains w but is larger then W ，bo $\operatorname{dim}(U+w) 2 \operatorname{dim} W=2$ so $\operatorname{din} U+W=3$ ，so $U+W=\mathbb{R}^{3}$

Another way：Mu，wa 3 bess for v $n_{w}, w_{3} b$ bess for w ． $\operatorname{cincc} w \notin V$ ， bo me w：\＆boer $\left(\left\{u_{1}, \varepsilon_{a}\right\}\right)$ bet then Mu，$u_{a}, w_{i} b$ is lin，incan so ce boss for
(b) Show that $U \cap W \neq\{0\}$.

If $u n w>h o b$, then
$u+w=v \oplus w$ end

$$
\operatorname{din}(u+u)=\operatorname{dim}(u)+\operatorname{dim}(u)
$$

us proved on HW. But then
di $m(v+w)=473$, a contradiction
So $u \cap W \neq 50\}$.

Another whey: Mu, kea 3 bes is for V and $k w_{1}, w_{2} 3$ bess for w.
hui, ea, wis was is dcoendent
so $c_{1} u_{1}+\varphi_{2} u_{2}+a_{3} u_{1}+u_{y} w_{2}=0$
so me $e_{i} \neq 0$
Then $a_{1} u_{1}+\omega_{2} u_{2}=-\left(a_{3} w_{1}+a_{4} w_{2}\right)$ is $\neq 0$ wend is in $u n W$

