MTH 235 Spring 2023

Final Exam, May 1, 2023

NAME (please print legibly): Solution Sef

Your University ID Number: \qquad

Please circle your instructor's name: Madhu
Kleene

- No notes or electronic devices are permitted during the exam.
- Full justification is required on all questions except the True/False. In particular, if you provide a counter-example, you must explain why your counter-example is appropriate.
- Please initial to indicate that you have read and understood these instructions.

PLEASE COPY THE HONOR PLEDGE AND SIGN. (Cursive is not required).
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

1. (16 points) Please choose true or false for the following questions. You do not need to justify your work, and partial credit will not be offered.
2. Let T be a linear operator on an n-dimensional vector space. Then there exists a polynomial $g(t)$ of degree n such that $g(T)=T_{0}$.
\checkmark TRUE

Cayley-Hamil ton Thearen.
2. A change-of-coordinates matrix is always invertible.

$$
\begin{array}{ll}
\nabla \text { TRUE } & \square \text { FALSE } \\
Q=\left[I_{v}\right]_{\beta}^{\gamma} \text {, ad } \quad I_{v} \text { is inertible. }
\end{array}
$$

3. There exists a linear operator T on \mathbb{R}^{n} such that every non-zero $v \in \mathbb{R}^{n}$ is an eigenvector of T.

$$
\begin{gathered}
\sqrt{\text { TRUE }} \\
\text { Th identity trousfortion: } \lambda=1 . \\
\text { Th zero trons fountion: } \lambda=0 .
\end{gathered}
$$

4. Every square matrix A satisfies $\operatorname{det}\left(A A^{t}\right)=\operatorname{det}\left(A^{t} A\right)=\operatorname{det}\left(A^{2}\right)$.

$$
\begin{aligned}
& \text { TRUE } \\
& \operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right) \\
& \operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)
\end{aligned}
$$

5. If U, W_{1}, W_{2} are subspaces of a vector space V such that $W_{1}+U=W_{2}+U$, then $W_{1}=W_{2}$.
(Recall that $\left.W_{1}+W_{2}=\left\{x_{1}+x_{2} \mid x_{1} \in W_{1}, x_{2} \in W_{2}\right\}.\right)$

TRUE
\checkmark FALSE
Let $u=v=\mathbb{R}^{3}, \quad w_{1}=\operatorname{sen}\{(1,0,0)\}, w_{2}=\operatorname{sen}\{(0,1.1)\}$.
6. If a matrix is diagonalizable, then it is invertible.

TRUE
\checkmark FALSE
This is only true if all ergenvalus are nom-zero.
7. A 2×2 matrix can have more than 3 eigenvectors.

TRUE
FALSE
Scalar multiples of eisenvectors ore also eisenve tors.
8. Let $V=P_{2}(\mathbb{R})$. Then $\langle f, g\rangle=\int_{0}^{1} f^{\prime}(x) g(x) d x$ defines an inner product on V.

TRUE
\checkmark FALSE
let $f(x)=3$. ta $\left\langle f_{1} f\right\rangle=0$, but $f \neq 0$.
2. (12 points)

Let $V=M_{2 \times 2}(\mathbb{R})$ with the inner product $\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)$.
Let $W=\operatorname{span}\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right)\right\}$.
(a) Determine an orthogonal basis for W. (This problem continues on the next page.)

$$
\begin{aligned}
V_{1}= & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
V_{2}= & \left(\begin{array}{ll}
1 & -1 \\
2 & 1
\end{array}\right)-\frac{\left\langle\left(\begin{array}{ll}
1 & -1 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle}{\left\|\left(\begin{array}{ll}
0 & 1 \\
1
\end{array}\right)\right\|^{2}}\left(\begin{array}{l}
0 \\
1 \\
10
\end{array}\right) \\
& \operatorname{tr}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{\top}\left(\begin{array}{ll}
1 & -1 \\
2 & 1
\end{array}\right)=\operatorname{tr}\left(\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right)=1 \\
& \left\|\left(\begin{array}{ll}
0 & 1 \\
1
\end{array}\right)\right\|^{2}=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle=\operatorname{tr}\left(\begin{array}{ll}
1 \\
1 & 0
\end{array}\right)^{2}=\operatorname{tr}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=2 \\
= & \left(\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -\frac{3}{2} \\
\frac{3}{2} & 1
\end{array}\right)
\end{aligned}
$$

(b) Find a vector in W^{\perp}. (Recall: $W^{\perp}=\{x \in V \mid\langle x, w\rangle=0$
for every $w \in W\}$.)
$\left(\begin{array}{ll}0 & 0 \\ \infty\end{array}\right) \in \omega^{\perp}$. More generally, we

We reed $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $\operatorname{tr}\binom{01}{10}\binom{a-b}{c d}=0$

$$
\text { So } b+c=0
$$

Also $\quad \operatorname{tr}\left(\begin{array}{cc}1 & \frac{3}{3} \\ -\frac{3}{2} & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=0$

$$
\text { 5. } \quad a+\frac{3}{2} c+-\frac{3}{2} b+d=0
$$

Substitud, $b=-c, \quad a+3 c+d=0$, so $\quad d=-a-3 c=-a+3 b$
fen a matrixim ω^{\perp} has the form $A=\left(\begin{array}{cc}a & b \\ -b & -a+3 b\end{array}\right)$

$$
\text { so }\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \in \omega \perp
$$

Alternately, fie l a $w_{3} \notin w$, suet as $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array} 0\right)$, and
Use the Gramschuidt process:

Calcalenors: : $0\left\langle(1,0),\binom{0}{0}\right\rangle=0$
(2) $\left\langle(60),\left(\frac{1}{1} \frac{-3}{2} 1 / 2\right)\right\rangle=1$
(3) $\left\|\left(\begin{array}{cc}1 & -\frac{3}{2} \\ \frac{3}{2} & 1\end{array}\right)\right\|^{2}=2+2\left(\frac{a}{4}\right)=\frac{13}{2}$

$$
v_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)-\frac{2}{13}\left(\begin{array}{cc}
\frac{1}{2} & -\frac{3}{2} \\
\frac{2}{2} & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{11}{3} & \frac{3}{3} \\
-\frac{2}{13} & -\frac{2}{13}
\end{array}\right)
$$

3. (12 points) The following matrix A is not diagonalizable. Provide a Jordan cannonical matrix similar to A. You do not need to provide a corresponding basis, but you do need to justify your answer.

$$
A=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The characteristic polywaid is $p(t)=(1-t)^{2}(-t)^{3}$

$$
\stackrel{\lambda_{1}=1}{=} A-I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$\operatorname{rank}=4$, so $\operatorname{dim}\left(E_{\lambda_{1}}\right)=1 \cdot \operatorname{din}\left(K_{\lambda_{1}}\right)=2$, so o basis fe $K_{\lambda_{1}}$ contains only in e ezenvecter. The Jardin-blecle for $\lambda_{1}=1$:s $\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}$.
$\lambda_{2}=0 \quad A-O I=A$, which has $\operatorname{ran} 3$. So tar $\operatorname{din}\left(E_{\lambda_{2}}\right)=2$. Thin a basis for $K \lambda_{2}$ has two eizerwetos. We get two Jordan blocks:

$J=\left(\begin{array}{ll|lll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
4. (12 points)
(a) Suppose that $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is a linear map satisfying

$$
N(T)=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{4}: 3 a_{1}=a_{4}, a_{2}=-a_{3}\right\} .
$$

Prove or disprove: T is surjective.

$$
N(T)=\operatorname{span}\{(1,0,0,3),(0,1,-1,0)\} .
$$

Then $\operatorname{dim}(N(T))=2$, so, by ta dimension theaven, $\operatorname{div}(R(T))=2$. Since $R(T) \subseteq \mathbb{R}^{2}$, ald $\operatorname{din}\left(\mathbb{R}^{2}\right)=2, R(T)=\mathbb{R}^{2}$. Hence T is onto.
(b) Is there a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ such that

$$
R(T)=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \mid a_{1}=-a_{2}\right\} ?
$$

Give an example or explain why no such example exists.
If such a T exists, $R(T)=\operatorname{span} \xi(1,-1,0,0),(0,1,0,0),(0,0,1,0) \xi$.
Then $\operatorname{dim}(R(t))=3>\operatorname{dim}\left(\mathbb{R}^{2}\right)$. The dimension theorem says feet $\operatorname{din}(R(T))$ must be tess than or equal to ter diversion of ta domain.
5. (12 points) Let $T \in \mathcal{L}\left(P_{2}(\mathbb{R})\right)$ be defined by $T(f)=f^{\prime}(x)(x-1)$. If possible, determine a basis γ with respect to which $[T]_{\gamma}$ is diagonal. Also determine $[T]_{\gamma}$
Let $\beta=\left\{l, x, x^{2}\right\}$.
$[T]_{\beta}=\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2\end{array}\right]$. $\begin{aligned} & \text { Since }[T]_{\beta} \text { is upper-triangaler, he con } \\ & \text { read the eigenvalue ff }\end{aligned}$ real the eigenvalue off th diagonal.

Let $\lambda_{1}=0 \quad[T]_{\beta}-0 I=\left[T \beta_{\beta} \rightarrow\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\right.$.
So $v_{1}=(1,0,0)$ is on eigenvector. of $[T]_{\beta}$

$$
\lambda_{2}=1 \quad[T]_{\beta}-I=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & 0 & -2 \\
0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& \text { So } v_{2}=(1,-1,0) \text { is an } \\
& \text { eigenvector of }[T\}_{\beta} .
\end{aligned}
$$

$$
\lambda_{3}=2[T]_{\beta}-2 I=\left[\begin{array}{ccc}
-2 & -1 & 0 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right], \begin{aligned}
& \text { so } v_{3}=(1-2,1) \text { is } \\
& \text { an erse vector of } \\
& {\left[T Z_{\beta} .\right.}
\end{aligned}
$$ $[T]_{\beta}$.

Ten $\gamma=\left\{1,1-x, 1-2 x+x^{2}\right\}$, and $[T]_{\gamma}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.
6. (12 points)
(a) Find the determinant of the following matrix. Briefly justify your answer.

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 5 & 2 & 0 & -1 \\
0 & -7 & 2 & 17 & -3 & 0 \\
4 & 23 & 0 & 6 & 2 & 5
\end{array}\right)
$$

If we swap R_{1} are R_{6}, R_{2} are R_{5}, all R_{3} al R_{4}, ne get an upper triangular matrix B. The product of its diagonal entries is $(4)(-7)(5)(1)(2)(-1)=280$.
Since we did three permutations, $\operatorname{dex}(A)=(-1)^{3} \operatorname{det}(B)$. to get $\operatorname{det}(A)=-280$.
(b) A skew symmetric matrix is one that satisfies $A^{T}=-A$. If A is $n \times n$, for what values of n must $\operatorname{det}(A)=0$?

$$
\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A) \text {. Also, } \operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A) \text {. }
$$

If $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(-A)$, tan $\operatorname{det}(A)=(-1)^{n} \operatorname{det}(A)$.
So $\operatorname{det}(A)=0$ if n is $\cdot \operatorname{del}$.
If n is even, it is nat necessarily the rose tent

$$
\operatorname{det} A=0 . \quad \text { Consider } \quad\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \text {. }
$$

7. (12 points)
(a) Suppose V is an n-dimensional vector space and $T \in \mathcal{L}(V)$. Suppose $T^{2}=T_{0}$. Can T be invertible? Why or why not?

No. Let $A=[T]_{\beta}$ for some basis β for V. Since $T^{2}=T_{0}, \operatorname{det}\left(A^{2}\right)=(\operatorname{det}(A))^{2}=0$. Hence $\operatorname{det} A=0$. Since A is not inurtible, T is not invertible.
(b) Suppose V is a vector space. Prove that the set of non-invertible linear operators on V is not a subspace of $\mathcal{L}(V)$.
The sum of now-inertible linear tronsforntions car be invertible. Consider $T_{1} \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ by $T_{1}(a, b)=(a, 0)$. Sine $N\left(T_{1}\right)=\operatorname{span}\{(0,1)\}, T_{1}$ has nontriniel nullspace, one is not invertible. Likewise $T_{2} \in \mathscr{L}\left(\mathbb{R}^{2}\right)$ gree by $T_{2}(a, b)=(a, b)$ is mot invertible. But $T_{1}+T_{2}$ is the identity.
So the set of now-incuritble linear operates on V is not closed under addition.
8. (12 points)

Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow: M_{2 \times 2}(\mathbb{R})$ be given by $T(A)=M A$, where $M=\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]$.
(a) Determine a basis for the T-cyclic subspace W_{1} generated by $E^{11}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and one for the T-cyclic subspace W_{2} generated by $E^{12}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
(Show your work in order to justify your conclusion. This question continues on the next page.)

$$
\begin{aligned}
& \omega_{1}:\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right]=4 E^{\prime \prime} \text {. }} \\
& \text { basis: } \beta_{1}=\left\{\left[\begin{array}{ll}
10 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]\right\} \\
& \omega_{2}:\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 4 \\
0 & 0
\end{array}\right]=4 E^{12} \quad \text { basic } \beta_{2}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\}}
\end{aligned}
$$

(b) Determine the characteristic polynomials of $T_{W_{1}}$ and $T_{W_{2}}$.

$$
\begin{aligned}
& \omega_{1} \text { : basis: } \beta_{1}=\left\{\left[\begin{array}{c}
10 \\
0
\end{array}\right]_{1}\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right]\right\} \\
& \left.\begin{array}{l}
T_{\omega_{1}}\left(v_{1}\right)=v_{2} \\
T_{\omega_{1}}\left(v_{2}\right)=v_{v}
\end{array}\right\}\left[\begin{array}{l}
T_{\omega_{1}}
\end{array}\right]_{\beta_{1}}=\left[\begin{array}{ll}
0 & 4 \\
1 & 0
\end{array}\right] \text { cw p.ly.s } t^{2}-4 \\
& \left.\omega_{2}: \text { basis } \beta_{2}=\left\{\begin{array}{c}
0 \\
01 \\
00 \\
v_{1}
\end{array}\right]_{1}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\} \\
& \left.\begin{array}{l}
T_{\omega_{2}\left(v_{1}\right)}=v_{2} \\
T_{\omega_{2}}\left(v_{2}\right)=4 v_{1}
\end{array}\right\} \quad\left[T_{\omega_{2}} \int_{\beta_{2}}=\left[\begin{array}{ll}
0 & 4 \\
1 & 0
\end{array}\right] \text { che pols is } t^{2}-4\right. \text {. }
\end{aligned}
$$

(c) Use the Cayley-Hamilton theorem to show that $T^{-1}=\frac{1}{4} T$. (Hint: Note $V=W_{1} \oplus W_{2}$.)

By Port (b) ane there Coylyy-Hamitton throw, $\left(T^{2}-Y I\right)(v)=0$ if $v \in W_{1}$ and $\left(T^{2}-4 I\right)(v)=0$ if $v \in \omega_{2}$.
Since $V=\omega_{1} \oplus \omega_{2}$, if $x \in V_{1}$, ta $x=V_{1}+v_{2}$ where $v_{1} \in \omega_{1}$ an $v_{2} \in W_{2}$. the $\left(T^{2}-4 I\right)(x)=\left(T^{2}-4 I\right)\left(v_{1}\right)+\left(T^{2}-4 I\right) v_{2}=0+0=0$. Since x was arbitrarily chosen, $T^{2}-4 I=T_{0}$.
then $T^{2}=4 I$, so $\frac{1}{4} T^{2}=I$. This rears $\frac{1}{4} T \cdot T=I$. So

$$
T^{-1}=\frac{1}{4} T .
$$

Scratch paper.
mor

