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Solution Set



1. (16 points) Please choose true or false for the following questions. You do not need to

justify your work, and partial credit will not be o↵ered.

1. Let T be a linear operator on an n-dimensional vector space. Then there exists a

polynomial g(t) of degree n such that g(T ) = T0.

⇤ TRUE ⇤ FALSE

2. A change-of-coordinates matrix is always invertible.

⇤ TRUE ⇤ FALSE

3. There exists a linear operator T on Rn such that every non-zero v 2 Rn is an eigenvector

of T .

⇤ TRUE ⇤ FALSE

4. Every square matrix A satisfies det(AAt) = det(AtA) = det(A2).

⇤ TRUE ⇤ FALSE
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5. If U,W1,W2 are subspaces of a vector space V such that W1 + U = W2 + U , then

W1 = W2.

(Recall that W1 +W2 = {x1 + x2|x1 2 W1, x2 2 W2}.)

⇤ TRUE ⇤ FALSE

6. If a matrix is diagonalizable, then it is invertible.

⇤ TRUE ⇤ FALSE

7. A 2⇥ 2 matrix can have more than 3 eigenvectors.

⇤ TRUE ⇤ FALSE

8. Let V = P2(R). Then hf, gi =
R 1

0 f 0(x)g(x)dx defines an inner product on V .

⇤ TRUE ⇤ FALSE
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2. (12 points)

Let V = M2⇥2(R) with the inner product hA,Bi = tr(BTA).

Let W = span

( 
0 1

1 0

!
,

 
1 �1

2 1

!)
.

(a) Determine an orthogonal basis for W . (This problem continues on the next page.)
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(b) Find a vector in W?. (Recall: W? = {x 2 V | hx, wi = 0

for every w 2 W}.)
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3. (12 points) The following matrix A is not diagonalizable. Provide a Jordan cannonical

matrix similar to A. You do not need to provide a corresponding basis, but you do need to

justify your answer.

A =

0

BBBBBB@

1 1 0 0 0

0 1 1 0 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
.
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4. (12 points)

(a) Suppose that T : R4 ! R2 is a linear map satisfying

N(T ) = {(a1, a2, a3, a4) 2 R4 : 3a1 = a4, a2 = �a3}.

Prove or disprove: T is surjective.
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(b) Is there a linear transformation T : R2 ! R4 such that

R(T ) = {(a1, a2, a3, a4)|a1 = �a2}?

Give an example or explain why no such example exists.

8

If such a T exists Rct span 1 1,010 011,01076,911013

The dim RCD 3 dim R Th dimension

theerer says feet dir RCT must be less

than or equal to ta diversion of ten domain



5. (12 points) Let T 2 L(P2(R)) be defined by T (f) = f 0(x)(x�1). If possible, determine

a basis � with respect to which [T ]� is diagonal. Also determine [T ]�
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6. (12 points)

(a) Find the determinant of the following matrix. Briefly justify your answer.

A =

0

BBBBBBBB@

0 0 0 0 0 �1

0 0 0 0 2 3

0 0 0 1 4 0

0 0 5 2 0 �1

0 �7 2 17 �3 0

4 23 0 6 2 5

1

CCCCCCCCA

(b) A skew symmetric matrix is one that satisfies AT = �A. If A is n⇥ n, for what values

of n must det(A) = 0?
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7. (12 points)

(a) Suppose V is an n-dimensional vector space and T 2 L(V ). Suppose T 2 = T0. Can T

be invertible? Why or why not?

(b) Suppose V is a vector space. Prove that the set of non-invertible linear operators on V

is not a subspace of L(V ).
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8. (12 points)

Let T : M2⇥2(R) !: M2⇥2(R) be given by T (A) = MA, where M =

"
0 2

2 0

#
.

(a) Determine a basis for the T -cyclic subspace W1 generated by E11 =

"
1 0

0 0

#
and one for

the T -cyclic subspace W2 generated by E12 =

"
0 1

0 0

#
.

(Show your work in order to justify your conclusion. This question continues on the next

page.)
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(b) Determine the characteristic polynomials of TW1 and TW2 .

(c) Use the Cayley-Hamilton theorem to show that T�1 = 1
4T . (Hint: Note V = W1 �W2.)
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Scratch paper.
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