MTH 235 Spring 2023

Midterm 1, February 16, 2023

NAME (please print legibly): Ley

Your University ID Number:

\qquad

Please circle your instructor's name: Madhu Kleene

- No notes or electronic devices are permitted during the exam.
- Full justification is required on all questions except the True/False. In particular, if you provide a counter-example, you must explain why your counter-example is appropriate.
- Please initial to indicate that you have read and understood these instructions.

PLEASE COPY THE HONOR PLEDGE AND SIGN. (Cursive is not required).
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

1. (20 points) Let $V=\left\{\left(a_{1}, a_{2}\right) \mid a_{i} \in \mathbb{R}\right\}$. For $\mathbf{u}=\left(u_{1}, u_{2}\right), \mathbf{v}=\left(v_{1}, v_{2}\right) \in V$ and $\lambda \in \mathbb{R}$ we define vector addition (\boxplus) and scalar multiplication (\square) below. In each case determine why V is not a vector space over \mathbb{R} with those operations and justify your answer by providing a specific counterexample.
(a) $\mathbf{u} \boxplus \mathbf{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}\right)$ and $\lambda \boxtimes \mathbf{u}=\left(\lambda u_{1}, \lambda u_{2}\right)$.

This addition is not commutative.
Let $u=(1,2)$ and $v=(3,4)$.
The $u \boxplus v=(-2,-2)$ al $v \oplus u=(2,2)$.
(b) $\mathbf{u} \boxplus \mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)$ and $\lambda \boxtimes \mathbf{u}= \begin{cases}\mathbf{0} & \text { if } \lambda=0 \\ \left(\lambda u_{1}, \frac{u_{2}}{\lambda}\right) & \text { if } \lambda \neq 0\end{cases}$ This multiplication fails VS8

Let $u=(1,2)$ are $\lambda_{1}=3$ and $\lambda_{2}=4$

$$
\begin{aligned}
\left(\lambda_{1}+\lambda_{2}\right) \square u & =7 \square(1,2)=\left(7, \frac{2}{7}\right) \\
\left(\lambda_{1} \cdot u\right) \boxplus\left(\lambda_{2} \square u\right) & =3 \square(1,2) \boxplus 4 \square(1,2) \\
& =\left(3, \frac{2}{3}\right) \boxplus\left(4, \frac{1}{2}\right) \\
& =\left(-1, \frac{1}{6}\right) .
\end{aligned}
$$

2. (20 points) Prove that \mathbb{R}^{3} is the sum of the subspaces $W_{1}=\{(x, y, 0) \mid x, y, \in \mathbb{R}\}$ and $W_{2}=\{(0, y, z) \mid y, z \in \mathbb{R}\}$. Also, prove that the sum is not a direct sum.

Let $v \in \mathbb{R}^{3}$. The $v=(a, b, c)$ for sore $a, b, c \in \mathbb{R}$.

$$
\text { So } V=(a, b, 0)+(0,0, c) \in \omega_{1}+\omega_{2} \text {. }
$$

Th. $\mathbb{R}^{3} \subseteq \omega_{1}+\omega_{2}$.
Let $v \in \omega_{1}+\omega_{2}$. the $v=(a, b, 0)+(0, c, d)$ for sone $a, b, c, d \in \mathbb{R}$.
Since $v=(a, b+c, d) \in \mathbb{R}^{3}, \omega_{1}+\omega_{2} \subseteq \mathbb{R}^{3}$, and we have equality.
(Note: This secure direction was proved in horeark, so not recessary to show here.)

Since $(0,1,0) \in \omega, \cap \omega_{2}$, the sum is nt direct.

3. (20 points)

Let V be a vector space and W_{1}, W_{2} subspaces of V. Suppose $\operatorname{dim}\left(W_{1}\right)=m, \operatorname{dim}\left(W_{2}\right)=n$, and $m>n$.
(a) Show that $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq n$.

$$
\text { Since } w_{1} \cap \omega_{2} \leqslant w_{2}, \quad \operatorname{din}\left(w_{1} \cap w_{2}\right) \leqslant \operatorname{din}\left(w_{2}\right)=n \text {. }
$$

(b) Suppose that $W_{1} \cup W_{2}$ is a subspace. Are you able to determine its dimension? Why or why not?

$$
\text { If } \omega_{1} \cup \omega_{2} \text { is a subspace, eitk2 } \omega_{1} \subseteq \omega_{2}
$$ or $\omega_{2} \subseteq \omega_{1}$. Since $\operatorname{div}\left(\omega_{1}\right)>\operatorname{dim}\left(\omega_{2}\right), \omega_{2} \subseteq \omega_{1}$. So $\omega_{1} \cup \omega_{2}=\omega_{1}$, which has diversion m.

4. (20 points)

Find a basis for the null space and range of the linear transformation $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=(a+c+2 d) x^{2}+(2 a+b+c+4 d) x+(3 b-3 c)
$$

If $T(M)=(0,0,0)$, ten

$$
\begin{gather*}
a+c+2 d=0 \tag{1}\\
2 a+b+c+4 d=0 \tag{2}\\
3 b-3 c=0 \tag{3}
\end{gather*}
$$

Since (3) Shows $b=c$, (2) reduces to trice equation (1).
Then m only need to satisfy $b=c$ and $a=-c-2 d$.
$\operatorname{Thn} N(T)=\left\{\left.\left(\begin{array}{cc}-c-2 d & c \\ c & d\end{array}\right) \right\rvert\, c, d \in R\right\}=\operatorname{spon}\left\{\left(\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right)\right\}$ This spounirg set is independent:

Setting $\lambda_{1}\left(\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right)+\lambda_{2}\left(\begin{array}{rr}-2 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}-\lambda_{1}-2 \lambda_{2} & \lambda_{1} \\ \lambda_{1} & \lambda_{2}\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)$,
we get $\lambda_{1}=\lambda_{2}=0$.
Then $\beta=\left\{\left(\begin{array}{rl}-1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{rr}-2 & 0 \\ 0 & 1\end{array}\right)\right\} .3$ a basis for $N(T)$.
To f.el $R(T)$, we apply T to the basis for $M_{2 \times 2}(\mathbb{R})$.

$$
\begin{aligned}
& T\left(E^{\prime \prime}\right)=x^{2}+x \\
& T\left(E^{12}\right)=x-3
\end{aligned}
$$

Since $x^{2}+x$ and $x-3$ are not scaler multiples of each other, we can stop there. We can see tent $\left\{x^{2}+x, x-3\right\}$ is mapenat and can be exfebel to a basis for $R(T)$. But from the dimension theorem, w know $\operatorname{div}(R(T))=2$. So $\gamma=\left\{x^{2}+x, x-3\right\}$ is a basis far R(T)

5．（20 points）Choose True or False for each question below．You do not have to justify your answers，and partial credit will not be offered．

1．The zero vector is a linear combination of any non－empty subset of a vector space V ． $凶$ TRUE $\quad \square$ FALSE

2．Every subspace of a finite－dimensional vector space is finite－dimensional．
® TRUEFALSE

3．Suppose $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{6}$ is linear and $\operatorname{dim}(N(T))=1$ ．Then T is one－to－one．TRUE
囚 FALSE

4．Suppose $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ is linear and $\operatorname{dim}(N(T))=1$ ．Then T is onto．
® TRUE $\quad \square$ FALSE

5．If $S \subset V$ is a subset，then we can always extend S to a basis for V ．
6. Let S be a subset of a vector space V, and $\operatorname{suppose} \operatorname{dim}(V)=n$. Suppose S generates V. Then any linearly independent subset of S has at most n vectors, and S has at least n vectors.

Q TRUE $\quad \square$ FALSE
7. If V is a vector space of finite dimension n, then V has exactly one subspace of dimension 0 and one of dimension n.
® TRUEFALSE
8. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be given by $T(f)=\int_{0}^{x} f(t) d t$. Then T is one-to-one. \boxtimes TRUE $\quad \square$ FALSE
9. If $\lambda \in F$ and $x, y \in V$ and $\lambda x=\lambda y$, then $x=y$.
10. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5} \in \mathbb{R}^{5}$. If both $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{4}, v_{5}\right\}$ are linearly independent sets, then $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a linearly independent set.

Use this page for scratch work.

