MTH 235 Spring 2023

Midterm 1, February 16, 2023

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Your University email \qquad

Please circle your instructor's name: Madhu Kleene

- No notes or electronic devices are permitted during the exam.
- Full justification is required on all questions except the True/False. In particular, if you provide a counter-example, you must explain why your counter-example is appropriate.
- Please initial to indicate that you have read and understood these instructions.

PLEASE COPY THE HONOR PLEDGE AND SIGN. (Cursive is not required).
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.
\qquad

QUESTION	VALUE	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

1. (20 points) Let $V=\left\{\left(a_{1}, a_{2}\right) \mid a_{i} \in \mathbb{R}\right\}$. For $\mathbf{u}=\left(u_{1}, u_{2}\right), \mathbf{v}=\left(v_{1}, v_{2}\right) \in V$ and $\lambda \in \mathbb{R}$ we define vector addition (\boxplus) and scalar multiplication (\square) below. In each case determine why V is not a vector space over \mathbb{R} with those operations and justify your answer by providing a specific counterexample.
(a) $\mathbf{u} \boxplus \mathbf{v}=\left(u_{1}-v_{1}, u_{2}-v_{2}\right)$ and $\lambda \boxtimes \mathbf{u}=\left(\lambda u_{1}, \lambda u_{2}\right)$.
(b) $\mathbf{u} \boxplus \mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)$ and $\lambda \boxminus \mathbf{u}= \begin{cases}\mathbf{0} & \text { if } \lambda=0 \\ \left(\lambda u_{1}, \frac{u_{2}}{\lambda}\right) & \text { if } \lambda \neq 0\end{cases}$
2. (20 points) Prove that \mathbb{R}^{3} is the sum of the subspaces $W_{1}=\{(x, y, 0) \mid x, y, \in \mathbb{R}\}$ and $W_{2}=\{(0, y, z) \mid y, z \in \mathbb{R}\}$. Also, prove that the sum is not a direct sum.

3. (20 points)

Let V be a vector space and W_{1}, W_{2} subspaces of V. Suppose $\operatorname{dim}\left(W_{1}\right)=m, \operatorname{dim}\left(W_{2}\right)=n$, and $m>n$.
(a) Show that $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq n$.
(b) Suppose that $W_{1} \cup W_{2}$ is a subspace. Are you able to determine its dimension? Why or why not?

4. (20 points)

Find a basis for the null space and range of the linear transformation $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=(a+c+2 d) x^{2}+(2 a+b+c+4 d) x+(3 b-3 c)
$$

5. (20 points) Choose True or False for each question below. You do not have to justify your answers, and partial credit will not be offered.
6. The zero vector is a linear combination of any non-empty subset of a vector space V. \square TRUEFALSE
7. Every subspace of a finite-dimensional vector space is finite-dimensional.
\qquadFALSE
8. Suppose $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{6}$ is linear and $\operatorname{dim}(N(T))=1$. Then T is one-to-one. \square TRUEFALSE
9. Suppose $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ is linear and $\operatorname{dim}(N(T))=1$. Then T is onto. \square TRUEFALSE
10. If $S \subset V$ is a subset, then we can always extend S to a basis for V.FALSE
11. Let S be a subset of a vector space V, and suppose $\operatorname{dim}(V)=n$. Suppose S generates V. Then any linearly independent subset of S has at most n vectors, and S has at least n vectors.
\square FALSE
12. If V is a vector space of finite dimension n, then V has exactly one subspace of dimension 0 and one of dimension n.

TRUEFALSE
8. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be given by $T(f)=\int_{0}^{x} f(t) d t$. Then T is one-to-one. \square TRUEFALSE
9. If $\lambda \in F$ and $x, y \in V$ and $\lambda x=\lambda y$, then $x=y$.FALSE
10. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5} \in \mathbb{R}^{5}$. If both $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{4}, v_{5}\right\}$ are linearly independent sets, then $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a linearly independent set.

Use this page for scratch work.

