## MTH 235 Final, May 8, 2012

NAME (please print):
STUDENT ID (please print):

| PART A | VALUE | SCORE | PART B | VALUE | SCORE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 20 |  | 6. | 30 |  |
| 2. | 20 |  | 7. | 10 |  |
| 3. | 20 |  | 8. | 20 |  |
| 4. | 20 |  | 9. | 20 |  |
| 5. | 20 |  | 10. | 20 |  |
| TOTAL A | 100 |  | TOTAL B | 100 |  |

Part A.

1. Let $V=\mathbb{R}$ and $W=P_{1}(\mathbb{R})$. Define $Z=V \times W=\{(v, w): v \in V \quad$ and $\quad w \in W\}$. Then $Z$ is a vector space over $\mathbb{R}$ with the operations

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right) \quad \text { and } \quad c\left(v_{1}, w_{1}\right)=\left(c v_{1}, c w_{1}\right)
$$

for $v_{1}, v_{2} \in V, w_{1}, w_{2} \in W$ and $c \in \mathbb{R}$.
(a) Find a basis for $Z$ and justify your answer.
(b) Prove that $Z$ is isomorphic to $\mathbb{R}^{3}$ by defining an invertible linear transformation $T: \mathbb{R}^{3} \rightarrow Z$.
2. Define $W=\left\{T \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}\right): T(1,0,0)=0\right\}$.
(a) Prove that $W$ is a subspace of $\mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}\right)$.
(b) What is the dimension of $W$ ? Justify your answer.
3. Let $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+x_{3}+x_{4}=0\right\}$ be a subspace of $\mathbb{R}^{4}$. Let $\beta=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\gamma=\left\{w_{1}, w_{2}, w_{3}\right\}$ be bases for $V$, where $v_{1}=(1,0,-1,0), v_{2}=(1,0,0,-1)$, $v_{3}=(0,1,0,0), w_{1}=(2,1,-1,-1), w_{2}=(3,2,-2-1)$ and $w_{3}=(4,2,-3,-1)$. Find the change of coordinate matrix that changes $\gamma$-coordinates into $\beta$-coordinates. (The answer is a $3 \times 3$ matrix.)
4. Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
3 & 2 & 4 \\
3 & 0 & 6
\end{array}\right)
$$

Find invertible matrices $B$ and $C$ such that the matrix $D=B A C$ is diagonal.
5. Find all solutions to the following system of equations.

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=3 \\
& 2 x_{1}+x_{2}+x_{3}=6
\end{aligned}
$$

Part B.
6. If the statement is true, then write TRUE. Otherwise, write FALSE.
(a) The determinant of an upper triangular matrix equals the product of its diagonal entries.

ANSWER: $\qquad$ .
(b) Every system of $n$ linear equations in $n$ unknowns can be solved by Cramer's rule.

## ANSWER:

$\qquad$ .
(c) Any two eigenvectors are linearly independent.

ANSWER: $\qquad$ .
(d) If $\lambda_{1}$ and $\lambda_{2}$ are distinct eigenvalues of a linear operator $T$, then $E_{\lambda_{1}} \bigcap E_{\lambda_{2}}=\{0\}$.

ANSWER: $\qquad$ .
(e) If $T$ is a linear operator on a finite-dimensional vector space $V$ and $W$ is a $T$-invariant subspace of $V$, then the characteristic polynomial of $T_{W}$ divides the characteristic polynomial of $T$.

ANSWER: $\qquad$ .
(f) If $\langle x, y\rangle=0$ for all $x$ in an inner product space, then $y=0$.

ANSWER: $\qquad$ .
7. Prove that if $A, B \in M_{n \times n}(F)$ are similar, then their characteristic polynomials are the same.
8. Let $V=P_{2}(\mathbb{R})$ and define a linear operator $T: V \rightarrow V$ by $T\left(a+b x+c x^{2}\right)=a+b+c+$ $b x+(b+2 c) x^{2}$. Find a basis $\beta$ for $V$ such that $[T]_{\beta}$ is a diagonal matrix.
9. (a) Let $V$ be an inner product space and suppose that $x$ and $y$ are orthogonal vectors in $V$. Prove that

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}
$$

(b) Let $V=P_{2012}(\mathbb{R})$ and define

$$
<f(x), g(x)>=\int_{0}^{1} f^{\prime}(x) g^{\prime}(x) d x
$$

where ' denotes differentiation. Is this an inner product on $V$ ? Explain why.
10. Let $V=P_{2}(\mathbb{R})$ with the inner product $<f(x), g(x)>=\int_{0}^{1} f(x) g(x) d x$. Use the GramSchmidt process to replace the standard ordered basis $\beta=\left\{1, x, x^{2}\right\}$ by an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for $V$.

