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1. (10 points) Prove (from the definitions) or disprove (using a counterexample) each of the following

statements.

(a) W = {(x, y, z) : x = 3z and z = y2} is a subspace of R3.

(b) T : R2 → R2 by T (x, y) = (y,−x) is a linear transformation.
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2. (8 points) Let n be a positive odd integer. Let 0n and In denote the n× n zero matrix and identity

matrix, respectively. Consider the following matrix:

A =

(
0n 3In
−2In 0n

)

(a) Find det(A). You may use n in your answer. Provide your reasoning.

(b) Is det(A) positive or negative?
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3. (10 points) Let F denote the vector space of functions f : R → R over the field R. Consider the

functions f1, f2, f3 ∈ F given by

f1(x) = x4/3, f2(x) = e2x ln(9), f3(x) = 37π+4x

Determine whether {f1, f2, f3} is linearly dependent or linearly independent, and provide a proof of your

answer.
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4. (10 points)

(a) Let A ∈ Mm×n(R). We say that R is a right inverse of A if AR = Im. Prove that if A has a right

inverse, then LA : Rn → Rm is surjective.

(b) Let V be an inner product space over the real numbers or the complex numbers, where 〈·, ·〉 denotes

the inner product. Prove (from the definitions) or disprove (using a counterexample) the following

statement:

For any vectors a, b, c ∈ V , if a is orthogonal to b and b is orthogonal to c, then a is orthogonal to c.
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5. (12 points) Let T : P2(R)→ P3(R) be a linear transformation defined by

T (f) = f + f ′ + f ′′,

where f ′ denotes the derivative of f . Let α = {1, x, x2} and β = {1, x, x2, x3} denote the standard ordered

bases for P2(R) and P3(R) respectively.

(a) Find the matrix [T ]βα of T with respect to α and β.

(b) Determine the null space N(T ) of T .

(continued on next page)
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(c) Describe the range R(T ) of T by exhibiting a basis for it. You do not need to prove it is a basis.

(d) Is T injective? Justify your answer.

(e) Is T an isomorphism? Justify your answer.
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6. (10 points) Let T : M2×2(R)→M2×2(R) be a linear operator defined by T (A) = At.

Please provide full justification for your answers below, even if you have seen this problem before.

(a) Find all the eigenvalues of T .

(continued on next page)
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(b) Describe the eigenspace of T corresponding to each eigenvalue, by exhibiting a basis for each eigenspace.

You do not need to prove they are bases.

(c) Determine whether T is diagonalizable or not. If T is diagonalizable, exhibit a basis for M2×2(R)

consisting of eigenvectors of T .
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7. (10 points) Let T be a linear operator on a vector space V of dimension n.

(a) Prove that, for any integer k ≥ n, T k can be expressed as a linear combination of I, T, T 2, . . . T k−1.

Hint: Use the Cayley-Hamilton Theorem. You do not need to use induction, but thinking about the

case k = n will give you an idea of what to do in general.

(b) Prove, without using the Cayley-Hamilton Theorem, that the set {I, T, T 2, . . . , T n
2−1, T n

2} is linearly

dependent.

Hint: This set is a subset of the vector space L(V, V ) of all linear operators on V .
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8. (10 points) Consider the vector space V = P2([0,∞)) of polynomials of degree at most 2 defined on

[0,∞), with inner product

〈f, g〉 =

∫ ∞
0

e−xf(x)g(x) dx.

Apply the Gram-Schmidt process to the standard basis {1, x, x2} to find an orthogonal basis for V with

respect to this inner product.

You may use, without proof, the fact that for any integer n ≥ 0,∫ ∞
0

e−xxn dx = n!
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9. (10 points) Let V be an inner product space over the real numbers or the complex numbers, where

〈·, ·〉 denotes the inner product. For each x ∈ V , define a linear operator Px : V → V by Px(y) = 〈y, x〉x.

(a) Prove that if x ∈ V with ‖x‖ = 1, then (Px)
2 = Px.

(b) Prove or disprove: {Px : x ∈ V } is a subspace of the vector space L(V, V ) of all linear operators on V .
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10. (10 points) Consider the matrix

A =

(
8 10

−5 −7

)
.

In this problem, you may use, without proof, the fact that A has eigenvalues −2 and 3, which correspond,

respectively, to eigenvectors

(
1

−1

)
and

(
−2

1

)
.

(a) Find matrices D and Q such that A = QDQ−1 and D is diagonal.

(b) Find Q−1.

(continued on next page)
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(c) Find the general solution to the system of differential equations y′(t) = Dy(t). Give explicit expressions

for y1(t) and y2(t). Your results should involve two arbitrary constants c1 and c2.

(d) Find the general solution to the system of differential equations

x′1(t) = 8x1(t) + 10x2(t)

x′2(t) = −5x1(t)− 7x2(t)
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Extra paper
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Extra paper
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