Math 235: Linear Algebra

Midterm Exam 1

October 21, 2014

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Please circle your professor's name: Bobkova Friedmann

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your final answers, on those questions for which it is appropriate.

QUESTION	VALUE	SCORE
1	25	
2	10	
3	25	
4	20	
5	10	
6	10	
TOTAL	100	

1. (25 points) Let $T: M_{2 \times 2}(R) \rightarrow R^{2}$ be a transformation defined for

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

by

$$
T(A)=\left(a_{11}-a_{21},-2 a_{11}+3 a_{22}\right)
$$

(a) Prove that T is linear.
(b) Find the kernel of T (denoted $\operatorname{Null}(T)$ or $N(T)$ or $\operatorname{ker}(T))$ and provide a basis for it.
(c) Find the range of T (denoted Range (T) or $R(T)$ or $\operatorname{Im}(T)$) and provide a basis for it.
(d) Find the matrix representation $[T]_{\alpha}^{\beta}$ where α is the standard basis of $M_{2 \times 2}(R)$ and β is the standard basis of R^{2}.
(e) Show that the rank-nullity theorem holds for T.
2. (10 points) Mark the following statements as True or False. No explanation necessary.
(a) Let V be a vector space. If W_{1} and W_{2} are both subspaces of V, True False then $W_{1}=W_{2}$.
(b) The intersection of any two subspaces W_{1} and W_{2} of a vector space True False V is a subspace of V.
(c) If W is a subspace of V and Z is a subspace of W, then Z is a True False subspace of V.
(d) If V is a vector space having dimension n, and if S is a subset of True False V with n vectors, then S is linearly independent if and only if S spans V.
(e) Every finite dimensional vector space has a unique basis.

True False
3. (25 points) Recall that if A is a 3×3 matrix, $\operatorname{tr}(A)$ is defined as the sum of the diagonal entries of A, i.e. $\operatorname{tr}(A)=a_{11}+a_{22}+a_{33}$.

Let $W=\left\{A \in M_{3 \times 3}(R) \mid \operatorname{tr}(A)=0\right\}$ be a subset of the vector space of 3×3 matrices with real entries.
(Note: you may do this problem for 2×2 matrices for 60% partial credit).
(a) Prove W is a subspace of $M_{3 \times 3}(R)$.
(b) Find a basis for W.
(c) Find the dimension of W.
4. (20 points) Suppose $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent set in vector space V and $w \in V$. Prove that if $\left(v_{1}+w, \ldots v_{n}+w\right)$ is linearly dependent, then $w \in \operatorname{Span}\left(v_{1}, \ldots v_{n}\right)$.
5. (10 points)
(a) Give an example of vector spaces V and W and a linear map $T: V \rightarrow W$ such that T is one-to-one but not onto.
(b) Give an example of vector spaces V and W and a linear map $T: V \rightarrow W$ such that T is onto but not one-to-one.
6. (10 points) Let $v_{1}, \ldots v_{k}, v$ be vectors in a vector space V and define $W_{1}=\operatorname{Span}\left\{v_{1}, \ldots v_{k}\right\}$ and $W_{2}=\operatorname{Span}\left\{v_{1}, \ldots, v_{k}, v\right\}$. Prove that $\operatorname{dim} W_{1}=\operatorname{dim} W_{2}$ if and only if $v \in W_{1}$.

