Math 235: Abstract Algebra

Midterm Exam 1

October 15, 2013

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Please circle your professor's name: Friedmann Tucker

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your final answers, on those questions for which it is appropriate.

QUESTION	VALUE	SCORE
1	10	
2	25	
3	20	
4	20	
5	15	
6	10	
TOTAL	100	

1. (10 points)

Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a subset of a vector space V. Suppose that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is dependent. Suppose that $v_{1} \neq 0$. Prove that we must have $v_{2} \in \operatorname{Span}\left(\left\{v_{1}\right\}\right)$ or $v_{3} \in \operatorname{Span}\left(\left\{v_{1}, v_{2}\right\}\right)$.

2. (25 points)

(a) Let V be a vector space of dimension $n \geq 2$. Let W_{1} and W_{2} be subspaces of V such that $W_{1} \neq V, W_{2} \neq V$, and $W_{1} \neq W_{2}$. Show that $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq \operatorname{dim} V-2$.
(b) Let V the space of all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$, and let W be the set of all functions f such that $f(1)=-f(2)$. Show that W is a subspace of V.
(c) Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ be a linear transformation. Let W be the set of all $v \in \mathbb{R}^{2}$ such that $T(v)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Is W a subspace of $\mathbb{R}^{2} ?$ Explain your answer carefully.

3. (20 points)

Let $T: P_{1}(\mathbb{R}) \longrightarrow P_{1}(\mathbb{R})$ (here $P_{1}(\mathbb{R})$ is the set of polynomials of degree at most 1 with coefficients in \mathbb{R} as usual) be the linear map such that $T(x+1)=x$ and $T(x-1)=5 x$.
(a) Find $T(1)$.
(b) Is T one-one? Explain your answer.
(c) Calculate $\operatorname{dim} \mathrm{R}(T)$.
(d) Let β be the ordered basis $\{1, x\}$ for $P_{1}(\mathbb{R})$. Write down the matrix $[T]_{\beta}^{\beta}$.

4. (20 points)

Let V be a vector space and let $T: V \longrightarrow V$ be a linear transformation.
(a) Suppose that $\left\{v_{1}, v_{2}\right\}$ are dependent. Show that $\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right\}$ must also be dependent.
(b) True or false and explain: Suppose that $\left\{v_{1}, v_{2}\right\}$ are independent. Then $\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right\}$ must also be independent.
(c) Suppose now that $\operatorname{dim} V=3$. Show that we must have $\mathrm{N}(T) \neq \mathrm{R}(T)$.
(d) Suppose again that $\operatorname{dim} V=3$. True or false and explain: if $T \neq 0$, then $T^{2} \neq 0$.
5. (15 points)
(a) Let $S=\left\{\binom{1}{3},\binom{0}{3}\right\}$. Is S linearly independent? Does S span \mathbb{R}^{2} ? Is S a basis for \mathbb{R}^{2} ? (Explain your answers.)
(b) Let $S=\left\{\binom{1}{0},\binom{0}{1},\binom{5}{4}\right\}$. Is S linearly independent? Does S span \mathbb{R}^{2} ? Is S a basis for \mathbb{R}^{2} ? (Explain your answers.)
(c) Let $S=\left\{\binom{1}{0}\right\}$. Is S linearly independent? Does S span \mathbb{R}^{2} ? Is S a basis for \mathbb{R}^{2} ? (Explain your answers.)
6. (10 points) Suppose that $\{u, v\}$ is a basis for a vector space V. Show that $\{u+v, u+2 v\}$ is also a basis for V.

