# Math 235: Linear Algebra 

## Midterm Exam 2

November 19, 2013

NAME (please print legibly): $\qquad$
Your University ID Number: $\qquad$
Please circle your professor's name: Friedmann Tucker

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your final answers, on those questions for which it is appropriate.

| QUESTION | VALUE | SCORE |
| ---: | ---: | ---: |
| 1 | 10 |  |
| 2 | 7 |  |
| 3 | 18 |  |
| 4 | 10 |  |
| 5 | 20 |  |
| 6 | 20 |  |
| 7 | 15 |  |
| TOTAL | 100 |  |

1. (10 points)

Let $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 0\end{array}\right)$. Find elementary matrices $E_{1}, \ldots, E_{n}$ such that

$$
E_{n} \ldots E_{1} A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. (7 points) Find the general form for the solutions to the set of linear equations:

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3}=2 \\
& x_{1}+2 x_{2}+x_{3}=5
\end{aligned}
$$

3. (18 points) Let $A=\left(\begin{array}{ccccc}1 & 3 & 11 & 2 & 12 \\ 2 & 0 & 4 & 0 & 4 \\ 3 & 1 & 9 & 2 & 16 \\ 4 & 2 & 14 & 1 & 13\end{array}\right)$. The row reduced form of $A$ is $\left(\begin{array}{lllll}1 & 0 & 2 & 0 & 2 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
(a) Find a basis for the null space of $L_{A}$. (Explain your answer.)
(b) Find a basis for the range of $L_{A}$. (Explain your answer.)
(continued)

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
1 & 3 & 11 & 2 & 12 \\
2 & 0 & 4 & 0 & 4 \\
3 & 1 & 9 & 2 & 16 \\
4 & 2 & 14 & 1 & 13
\end{array}\right) \text { The row reduced form of } A \text { is }\left(\begin{array}{lllll}
1 & 0 & 2 & 0 & 2 \\
0 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \text { (c) Is }\left\{\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
3 \\
0 \\
1 \\
2
\end{array}\right),\left(\begin{array}{c}
11 \\
4 \\
9 \\
14
\end{array}\right)\right\} \text { a basis } R\left(L_{A}\right) \text { ? (Explain your answer.) }
\end{aligned}
$$

(d) Is $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}3 \\ 0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}12 \\ 4 \\ 16 \\ 13\end{array}\right)\right\}$ a basis $R\left(L_{A}\right)$ ? (Explain your answer.)
4. (10 points) Suppose $B$ is a matrix and that its row reduced form is $\left(\begin{array}{lllll}1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 2 & 0\end{array}\right)$. Suppose the first column of $B$ is $\binom{3}{2}$ and the third column is $\binom{1}{4}$.
(a) What is the second column of $B$ ?
(b) What is the fourth column of $B$ ?
(c) What is the fifth column of $B$ ?

## 5. (20 points)

(a) Let $A$ be an $n \times n$ matrix and let $S$ be the set of all $n \times n$ matrices $C$ such that $C A=0$. Prove that $S$ is a subspace of $M_{n n}(\mathbb{R})$ (where $M_{n n}(\mathbb{R})$ is the space of all $n \times n$ matrices with coefficients in $\mathbb{R}$ ).
(b) Let $A$ and $B$ be two $n \times n$ matrices and suppose that $\operatorname{Rank}(A B)=\operatorname{Rank}(B)$. Show that $\mathrm{N}\left(L_{A}\right) \cap \mathrm{R}\left(L_{B}\right)=\{0\}$ (where $L_{A}$ is the map from $\mathbb{R}^{n}$ to $\mathbb{R}^{n}$ sending $v$ to $A v$ and $L_{B}$ is the map from $\mathbb{R}^{n}$ to $\mathbb{R}^{n}$ sending $v$ to $B v$, as usual).
6. (20 points) In all of the questions below, $T, U: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ are linear maps. You should explain your answers carefully.
(a) True or false and explain: If $U T$ is onto, then $U$ is onto.
(b) True or false and explain: if $U$ is onto, then $U T$ is onto.
(c) If $T$ is one-one, then $\operatorname{Rank}(T)=n$.
(d) True or false and explain: $\operatorname{Rank}(U+T) \leq \operatorname{Rank}(U)$.
(e) True or false and explain: if $U$ and $T$ are onto, then $\operatorname{Rank}(U+T)=n$.
7. (15 points) In this problem $A$ is an $m \times n$ matrix ( $m$ rows and $n$ columns) representing a system of $m$ equations and $n$ unknowns.
(a) Suppose there is a $b \in \mathbb{R}^{m}$ such that there is exactly one $x \in \mathbb{R}^{n}$ for which $A x=b$. Show that the homogenous equation $A x=0$ has exactly one solution.
(b) Suppose now that $m>n$. Show that there is a $w \in \mathbb{R}^{m}$ such that there is no solution to the equation $A v=w$.

