
Math 235, Spring 2017 (Dummit/McTague) ∼ Linear Algebra ∼ Midterm 2 Solutions

These solutions are not intended to be exhaustive, but they should be su�cient for anyone who has already tried
to work through the problems. Some problems may have multiple di�erent solutions, so yours may still be correct
even if it is di�erent from the solution appearing here.

1. For each part, simply try to verify the two parts of the de�nition of a linear transformation.

(a) This map is a linear transformation , and in fact is left-multiplication by

 1 −1
2 0
1 1

.
• [T1]: We have T (x1 + x2, y1 + y2) = 〈x1 + x2 − y1 − y2, 2x1 + 2x2, x1 + x2 + y1 + y2〉 = T (x1, y1) +
T (x2, y2).

• [T2]: We have T (cx, cy) = 〈cx− cy, 2cx, cx+ cy〉 = cT (x, y).

(b) This map is not a linear transformation , as it fails both [T1] and [T2]. For example, if A = I2 then
T (A) = I2, so T (2A) = 4I2 is not equal to 2T (A).

(c) This map is a linear transformation .

• [T1]: We have T (p1 + p2) = (p1 + p2)
′(x+ 1) = p′1(x+ 1) + p′2(x+ 1) = T (p1) + T (p2).

• [T2]: We have T (cp) = (cp)′(x+ 1) = c p′(x+ 1) = cT (p).

2.

(a) True : For example, T (2x+ x2 + x3) = 〈2, 2, 6〉. (In fact, T is onto.)

(b) False : The set {T (v1), . . . , T (vn)} is only a spanning set for im(T ), and may be linearly dependent.
(For example, T could be the zero transformation.)

(c) True : Since T (A) = 0 only when A = 0, and T ( 12A
T ) = A, T is one-to-one and onto. Alternatively, T

has an inverse function T−1(A) = 1
2A

T , so it is an isomorphism.

(d) False : Although the given dimensions are consistent with the nullity-rank theorem, the image of T
must be a subspace of R2 and therefore cannot have dimension 3.

(e) False : The derivative map D : P (R)→ P (R) is an example of an onto map that is not one-to-one. (If
V were �nite-dimensional, the statement would be true.)

(f) True : This is a theorem. To summarize, 〈T ∗(v),w〉 = 〈w, T ∗(v)〉 = 〈T (w),v〉 = 〈v, T (w)〉, so T
satis�es the requirements of (T ∗)∗. Since the adjoint is unique, we conclude (T ∗)∗ = T .

(g) True : If dim(V ) = n and dim(W ) = m, then L(V,W ) and L(W,V ) both have dimension mn, so they
are isomorphic. (In fact they are still isomorphic in the in�nite-dimensional case.)

(h) False : In general, [I]βα is the change-of-basis matrix from α-coordinates to β-coordinates, so the given
statement is only true when α = β.

(i) True : The cancellation was performed in the correct order.

(j) True : This is an example of change of basis: the desired Q is [I]αβ , since then Q−1 = [I]βα, and

[T ]ββ = [I]βα[T ]
α
α[I]

α
β = Q−1[T ]ααQ.

3. If p(x) = a+ bx+ cx2, observe that T (p) = 〈a+ b+ c, b+ 2c, a+ 2b+ 3c〉.

(a) Notice that T (p) = 〈0, 0, 0〉 precisely when p(1) = p′(1) = p(1) + p′(1) = 0, so p(1) = p′(1) = 0, or

equivalently, a+ b+ c = b+ 2c = 0. Solving yields p = a(x− 1)2, so a basis is given by {(x− 1)2} .
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(b) Since β = {1, x, x2} is a basis of P2(R), {T (1), T (x), T (x2)} will span the image of T . We compute
T (1) = 〈1, 0, 1〉, T (x) = 〈1, 1, 2〉, and T (x2) = 〈2, 1, 3〉. Since the �rst two vectors are linearly independent
but the third is a linear combination (the sum), a basis is given by {〈1, 0, 1〉 , 〈1, 1, 2〉} .

(c) The columns are the coe�cients of T (1) = 〈1, 0, 1〉, T (x) = 〈1, 1, 2〉, T (x2) = 〈2, 1, 3〉 with respect to the

basis γ, so the matrix is [T ]γβ =

 1 1 2
0 1 1
1 2 3

 .

4. If T (v) = 0 then v = T 3(v) = T 2(0) = 0, so T is one-to-one. Furthermore, T (T 2v) = v, so T is onto. Hence
T is an isomorphism.
Alternatively, if T 3 = I, then T (T 2) = I = (T 2)T , so T 2 is a two-sided inverse of T . Therefore, T is an
isomorphism and hence both one-to-one and onto.

5. Suppose T (v) = 0. Writing v = a1v1 + · · · + anvn we see T (v) = a1T (v1) + · · · + anT (vn), so since γ is
linearly independent, all the coe�cients are zero, so v = 0 and T is one-to-one. Furthermore, T is onto, since
if w = a1T (v1) + · · · + anT (vn) then w = T (a1v1 + · · · + anvn). Thus, T is one-to-one and onto, hence an
isomorphism.
Alternatively, since γ is a basis of W , there exists a linear transformation R : W → V with R(T (vi)) = vi
for each 1 ≤ i ≤ n, since a linear transformation can be speci�ed arbitrarily on a basis. Then R is an inverse
transformation for T , so T is an isomorphism.
Alternatively, the given information implies that [T ]γβ = In. Since the associated matrix is invertible, T is
invertible, and therefore an isomorphism.

6. Note that this problem is partly a special case of problem II.C on homework 8.

(a) Suppose w is in im(T ). Then there exists v with w = T (v). Then T (w) = T (T (v)) = 0, meaning that
w is in ker(T ). Thus, im(T ) is contained in ker(T ).

(b) By part (a), dim(imT ) ≤ dim(kerT ), and by nullity-rank, dim(imT ) + dim(kerT ) = 2. Thus, dim(imT )
is either 0 or 1. But the dimension of the image cannot be zero, since this would imply that T is the zero
transformation. Thus, dim(imT ) = 1.

(c) Since {v,w} has size 2 = dim(R2) it is enough to show that v and w are linearly independent. But if
0 = av + bw then 0 = T (0) = T (av + bw) = aT (v) + bT (w) = bv, so since v is nonzero, b = 0. Then
av = 0 so a = 0. So {v,w} is linearly independent, hence a basis.

(d) Since T (v) = 0 = 0v + 0w and T (w) = v = 1v + 0w, the matrix is [T ]ββ =

[
0 1
0 0

]
as claimed.

7.

(a) Suppose v is in im(T ) and w is in ker(T ∗): then there exists some y with T (y) = v and T ∗(w) = 0.
Then 〈v,w〉 = 〈T (y),w〉 = 〈y, T ∗(w)〉 = 〈y,0〉 = 0, so v and w are orthogonal.

(b) Since β is an orthonormal basis, the matrix associated to T ∗ is the conjugate-transpose of the matrix

associated to T , so, explicitly, [T ∗]ββ =

[
1 4
−3i 2 + i

]
.
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