MTH 235: Linear Algebra

Midterm 2

April 4, 2017

NAME (please print legibly): \qquad Your University ID Number: \qquad
Circle your instructor:

Evan Dummit Carl MTague

- The presence of electronic devices (including calculators), books, or formula cards/sheets at this exam is strictly forbidden.
- Show all work and justify all answers. You MUST provide complete, clear answers for each problem, and justify each step in your proofs.
- You may appeal to any theorems, propositions, etc. covered at any point in the course, but please make clear what results you are using.
- In problems with multiple parts, you may use the results of previous parts in later parts, EVEN if you did not solve the earlier parts correctly.
- You are responsible for checking that this exam has all 7 pages.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

QUESTION	VALUE	SCORE
1	15	
2	25	
3	14	
4	8	
5	10	
6	16	
7	12	
TOTAL	100	

1. (15 points) For each map $T: V \rightarrow W$, determine whether or not T is a linear transformation. If so, prove it, and if not, identify (at least) one property that fails.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, where $T(x, y)=\langle x-y, 2 x, x+y\rangle$.
(b) $T: M_{3 \times 3}(\mathbb{R}) \rightarrow M_{3 \times 3}(\mathbb{R})$, where $T(A)=A^{T} A$.
(c) $T: P(\mathbb{C}) \rightarrow P(\mathbb{C})$, where $T(p(x))=p^{\prime}(x+1)$.
2. ($\mathbf{2 5}$ points) For each of the following, circle the correct response (there is no partial credit or penalty for wrong answers, and no work is required). Assume $T: V \rightarrow W$ is a linear transformation, where V and W are not necessarily finite-dimensional.

True False The vector $\mathbf{v}=\langle 2,2,6\rangle$ is in the image of the map $T: P_{4}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ with $T(p)=\left\langle p^{\prime}(0), p^{\prime \prime}(0), p^{\prime \prime \prime}(0)\right\rangle$.

True False If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis for $\operatorname{im}(T)$.

True False The linear transformation $T: M_{2 \times 3}(\mathbb{R}) \rightarrow M_{3 \times 2}(\mathbb{R})$ given by $T(A)=2 A^{T}$ is one-to-one and onto.

True False There exists a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ with nullity 2 and rank 3.

True False If $T: V \rightarrow V$ is linear, then T is one-to-one if and only if T is onto.

True False If T^{*} exists, then $\left(T^{*}\right)^{*}$ necessarily exists and equals T.

Now assume that the vector spaces V and W are finite-dimensional, that α, β, and γ are ordered bases of V, V, and W respectively, and that S and T are linear transformations.

True False $\mathcal{L}(V, W)$ is isomorphic to $\mathcal{L}(W, V)$.

True False If $I: V \rightarrow V$ is the identity map, then $[I]_{\alpha}^{\beta}$ is always the identity matrix.

True False If $S: V \rightarrow W$ and $T: W \rightarrow V$, then $[S T]_{\gamma}^{\gamma}=[S]_{\beta}^{\gamma}[T]_{\gamma}^{\beta}$.

True False For any $T: V \rightarrow V$, there always exists an invertible matrix Q such that $[T]_{\beta}^{\beta}=Q^{-1}[T]_{\alpha}^{\alpha} Q$.
3. (14 points) Let $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear transformation with

$$
T(p)=\left\langle p(1), p^{\prime}(1), p(1)+p^{\prime}(1)\right\rangle .
$$

(a) Find a basis for the kernel of T.
(b) Find a basis for the image of T.
(c) With the ordered bases $\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\{\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 0,0,1\rangle\}$ find the associated matrix $[T]_{\beta}^{\gamma}$.
4. (8 points) Suppose $T: V \rightarrow V$ is a linear transformation with the property that T^{3} is the identity transformation. Prove that T is one-to-one and onto.
5. (10 points) Suppose that V is finite-dimensional with ordered basis $\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, and that $T: V \rightarrow W$ is linear. If $\gamma=\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis of W, prove that T is an isomorphism.
6. (16 points) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that T^{2} is the zero transformation, but T is not.
(a) Show that the kernel of T contains the image of T.
(b) Show that $\operatorname{dim}(\operatorname{im}(T))=1$.
(c) Let \mathbf{v} be a nonzero vector in $\operatorname{im}(T)$, where $T(\mathbf{w})=\mathbf{v}$. Prove that $\beta=\{\mathbf{v}, \mathbf{w}\}$ is a basis of \mathbb{R}^{2}. (Hint: Apply T to a linear dependence.)
(d) With $\beta=\{\mathbf{v}, \mathbf{w}\}$ as in part (c), show that the matrix $[T]_{\beta}^{\beta}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
7. (12 points) Let V be an inner product space (not necessarily finite-dimensional) and $T: V \rightarrow V$ be a linear transformation possessing an adjoint T^{*}.
(a) If \mathbf{v} is any vector in $\operatorname{im}(T)$ and \mathbf{w} is any vector in $\operatorname{ker}\left(T^{*}\right)$, prove that \mathbf{v} and \mathbf{w} are orthogonal.
(b) Let β be the standard orthonormal basis of \mathbb{C}^{3}. Suppose that $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ is the linear transformation with associated matrix $[T]_{\beta}^{\beta}=\left[\begin{array}{cc}1 & 3 i \\ 4 & 2-i\end{array}\right]$. What is the matrix $\left[T^{*}\right]_{\beta}^{\beta}$ associated to the adjoint T^{*} ?

