MTH 235: Linear Algebra

Midterm 2 April 4, 2017

NAME (please print le	egibly):		
Your University ID N	umber:		
Circle your instructor:			
	Evan Dummit	Carl M ^c Tague	

• The presence of electronic devices (including calculators), books, or formula cards/sheets at this exam is strictly forbidden.

- Show all work and justify all answers. You MUST provide complete, clear answers for each problem, and justify each step in your proofs.
- You may appeal to any theorems, propositions, etc. covered at any point in the course, but please make clear what results you are using.
- In problems with multiple parts, you may use the results of previous parts in later parts, EVEN if you did not solve the earlier parts correctly.
- You are responsible for checking that this exam has all 7 pages.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

QUESTION	VALUE	SCORE
1	15	
2	25	
3	14	
4	8	
5	10	
6	16	
7	12	
TOTAL	100	

Signature:

1. (15 points) For each map $T: V \to W$, determine whether or not T is a linear transformation. If so, prove it, and if not, identify (at least) one property that fails.

(a) $T: \mathbb{R}^2 \to \mathbb{R}^3$, where $T(x, y) = \langle x - y, 2x, x + y \rangle$.

(b) $T: M_{3\times 3}(\mathbb{R}) \to M_{3\times 3}(\mathbb{R})$, where $T(A) = A^T A$.

(c) $T: P(\mathbb{C}) \to P(\mathbb{C})$, where T(p(x)) = p'(x+1).

2. (25 points) For each of the following, circle the correct response (there is no partial credit or penalty for wrong answers, and no work is required). Assume $T: V \to W$ is a linear transformation, where V and W are not necessarily finite-dimensional.

True False The vector $\mathbf{v} = \langle 2, 2, 6 \rangle$ is in the image of the map $T : P_4(\mathbb{R}) \to \mathbb{R}^3$ with $T(p) = \langle p'(0), p''(0), p'''(0) \rangle.$

True False If $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a basis of V, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ is a basis for im(T).

True False The linear transformation $T: M_{2\times 3}(\mathbb{R}) \to M_{3\times 2}(\mathbb{R})$ given by $T(A) = 2A^T$ is one-to-one and onto.

True False There exists a linear map $T : \mathbb{R}^5 \to \mathbb{R}^2$ with nullity 2 and rank 3.

True False If $T: V \to V$ is linear, then T is one-to-one if and only if T is onto.

True False If T^* exists, then $(T^*)^*$ necessarily exists and equals T.

Now assume that the vector spaces V and W are finite-dimensional, that α , β , and γ are ordered bases of V, V, and W respectively, and that S and T are linear transformations.

True False $\mathcal{L}(V, W)$ is isomorphic to $\mathcal{L}(W, V)$.

True False If $I: V \to V$ is the identity map, then $[I]^{\beta}_{\alpha}$ is always the identity matrix.

True False If $S: V \to W$ and $T: W \to V$, then $[ST]^{\gamma}_{\gamma} = [S]^{\gamma}_{\beta}[T]^{\beta}_{\gamma}$.

True False For any $T: V \to V$, there always exists an invertible matrix Qsuch that $[T]^{\beta}_{\beta} = Q^{-1}[T]^{\alpha}_{\alpha}Q$. 3. (14 points) Let $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformation with

 $T(p) = \langle p(1), p'(1), p(1) + p'(1) \rangle$.

(a) Find a basis for the kernel of T.

(b) Find a basis for the image of T.

(c) With the ordered bases $\beta = \{1, x, x^2\}$ and $\gamma = \{\langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle 0, 0, 1 \rangle\}$ find the associated matrix $[T]_{\beta}^{\gamma}$.

4. (8 points) Suppose $T: V \to V$ is a linear transformation with the property that T^3 is the identity transformation. Prove that T is one-to-one and onto.

5. (10 points) Suppose that V is finite-dimensional with ordered basis $\beta = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$, and that $T: V \to W$ is linear. If $\gamma = {T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)}$ is a basis of W, prove that T is an isomorphism.

6. (16 points) Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that T^2 is the zero transformation, but T is not.

(a) Show that the kernel of T contains the image of T.

(b) Show that $\dim(\operatorname{im}(T)) = 1$.

(c) Let \mathbf{v} be a nonzero vector in im(T), where $T(\mathbf{w}) = \mathbf{v}$. Prove that $\beta = {\mathbf{v}, \mathbf{w}}$ is a basis of \mathbb{R}^2 . (Hint: Apply T to a linear dependence.)

(d) With $\beta = \{\mathbf{v}, \mathbf{w}\}$ as in part (c), show that the matrix $[T]_{\beta}^{\beta} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

- 7. (12 points) Let V be an inner product space (not necessarily finite-dimensional) and $T: V \to V$ be a linear transformation possessing an adjoint T^* .
- (a) If \mathbf{v} is any vector in im(T) and \mathbf{w} is any vector in $ker(T^*)$, prove that \mathbf{v} and \mathbf{w} are orthogonal.

(b) Let β be the standard orthonormal basis of \mathbb{C}^3 . Suppose that $T : \mathbb{C}^3 \to \mathbb{C}^3$ is the linear transformation with associated matrix $[T]^{\beta}_{\beta} = \begin{bmatrix} 1 & 3i \\ 4 & 2-i \end{bmatrix}$. What is the matrix $[T^*]^{\beta}_{\beta}$ associated to the adjoint T^* ?