
Math 235, Spring 2017 (Dummit/McTague) ∼ Linear Algebra ∼ Midterm 1 Solutions

These solutions are not intended to be exhaustive, but they should be su�cient for anyone who has already tried
to work through the problems. Some problems may have multiple di�erent solutions, so yours may still be correct
even if it is di�erent from the solution appearing here.

1. We prove this by induction on n. For the base case we take n = 2: then indeed 1 · 2 =
23 − 2

3
. For the

inductive step, suppose that 1 · 2 + 2 · 3 + · · ·+ (n− 1) · n =
n3 − n

3
. Then

1 · 2 + 2 · 3 + · · ·+ (n− 1) · n+ n · (n+ 1) = [1 · 2 + 2 · 3 + · · ·+ (n− 1) · n] + n · (n+ 1)

=
n3 − n

3
+ n(n+ 1)

=
n3 − n+ 3n2 + 3n

3

=
n3 + 3n2 + 2n

3
=

(n+ 1)3 − (n+ 1)

3

as required.

2. If z = ri, then z = −ri = −z. Conversely, if z = a+ bi, we see z = a− bi while −z = −a− bi, and these are
equal precisely when a = 0.

3.

(a) True : the set of vectors in both W1 and W2 is the same as the intersection W1 ∩W2, which we proved
was a subspace of V .

(b) True : it satis�es the three components of the subspace criterion.

(c) False : since P4(R) has dimension 4, any spanning set must contain at least 4 vectors; the given set has
only 3.

(d) False : the zero space has dimension 0. (The dimension of any other space is positive.)

(e) False : while it is true that any spanning set must contain 3 vectors, there are certainly sets with many
vectors that do not span V . An example is V = R2 with the set {〈1, 0〉 , 〈2, 0〉 , 〈3, 0〉 , 〈4, 0〉}.

(f) True : any basis must have exactly 3 elements.

(g) False : since R3 has dimension 3, any set of more than 3 vectors is linearly dependent.

(h) True : we have 〈3x, 2x〉 = 6 〈x,x〉, and 〈x,x〉 ≥ 0 by the positive-de�niteness property.

(i) True : this is the triangle inequality.

(j) True : these vectors are orthogonal, each of them has length 1, and there are three of them (meaning
that they form a linearly independent set in the 3-dimensional vector space R3, so they are a basis).

4.

(a) We just check the parts of the subspace criterion. Note that the vectors in S have the form 〈x1, x2, x3, x3, x1 + x2〉.
• [S1]: The zero vector satis�es both conditions.

• [S2]: If v = 〈x1, x2, x3, x3, x1 + x2〉 and w = 〈y1, y2, y3, y3, y1 + y2〉 then
v +w = 〈x1 + y1, x1 + y2, x3 + y3, x3 + y3, (x1 + y1) + (x2 + y2)〉 which is of the desired form.
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• [S3]: If v = 〈x1, x2, x3, x3, x1 + x2〉 then cv = 〈cx1, cx2, cx3, cx3, cx1 + cx2〉 which is of the desired
form.

(b) As noted above, the vectors in S are those of the form 〈x1, x2, x3, x3, x1 + x2〉. Since 〈x1, x2, x3, x3, x1 + x2〉 =
x1 〈1, 0, 0, 0, 1〉+x2 〈0, 1, 0, 0, 1〉+x3 〈0, 0, 1, 1, 0〉, we see that 〈1, 0, 0, 0, 1〉 , 〈0, 1, 0, 0, 1〉 , 〈0, 0, 1, 1, 0〉 span
S. Furthermore, since they are clearly linearly independent, they are a basis for S. So we get the basis

{〈1, 0, 0, 0, 1〉 , 〈0, 1, 0, 0, 1〉 , 〈0, 0, 1, 1, 0〉} and get dim(S) = 3 .

5.

(a) Suppose w is in V . If S spans V , then there exist scalars a1, a2, . . . , an such that w = a1v1 + a2v2 +
· · ·+ anvn. In order to show that T spans V , we need to show that there exist scalars b1, b2, . . . , bn such
that w = b1(v1 − v2) + b2(v2 − v3) + · · ·+ bn−1(vn−1 − vn) + bnvn.
Expanding and collecting terms yields w = b1v1 + (b2 − b1)v2 + (b3 − b2)v3 + · · ·+ (bn − bn−1)vn.
Comparing this to the linear combination we had for w above, we should try b1 = a1, b2 − b1 = a2,
b3 − b2 = a3, ... , bn − bn−1 = an. This yields b1 = a1, b2 = a1 + a2, b3 = a1 + a2 + a3, ... ,
bn = a1 + a2 + · · ·+ an.
So, by the calculation above, we can write w = a1(v1−v2)+ (a1+a2)(v2−v3)+ · · ·+(a1+ · · ·+an)vn,
meaning that w is in span(T ).

Remark In part (a), many students showed the reverse implication (if T spans V then S spans V ) by
starting with w as a linear combination of elements in T , expanding as

w = b1(v1 − v2) + b2(v2 − v3) + · · ·+ bn−1(vn−1 − vn) + bnvn

= b1v1 + (b2 − b1)v2 + (b3 − b2)v3 + · · ·+ (bn − bn−1)vn

and then concluding that the vector w was in span(S).

(b) Suppose that we had a dependence b1(v1−v2)+b2(v2−v3)+· · ·+bn−1(vn−1−vn)+bnvn = 0. Expanding
like in part (a), we see that b1v1+(b2− b1)v2+(b3− b2)v3+ · · ·+(bn− bn−1)vn = 0. But now since S is
linearly independent, each coe�cient must be zero: this gives b1 = b2−b1 = b3−b3 = · · · = bn−bn−1 = 0,
so clearly each of b1, b2, . . . , bn must be zero.

(c) If S is a basis for V , then since S spans V , part (a) implies T spans V . Also, since S is linearly
independent, part (b) implies T is linearly independent. Then T spans V and is linearly independent, so
it is a basis.

6.

(a) We need to check the properties of an inner product. (Note that since V is a real vector space, we can
ignore the conjugation and just show it is symmetric.)

• [I1]: We have

〈(a1 + ra2, b1 + rb2), (c, d)〉 = 3(a1 + ra2)c+ (a1 + ra2)d+ (b1 + rb2)c+ (b1 + rb2)d

= [3a1c+ a1d+ b1c+ b1d] + r[3a2c+ a2d+ b2c+ b2d]

= 〈(a1, b1), (c, d)〉+ 〈(a2, b2), (c, d)〉 .

• [I2]: We have 〈(c, d), (a, b)〉 = 3ca+ cb+ da+ db = 3ac+ ad+ bc+ bd = 〈(a, b), (c, d)〉.
• [I3]: We have 〈(a, b), (a, b)〉 = 3a2+2ab+ b2 = 2a2+(a+ b)2, which is a sum of squares hence always
nonnegative. Furthermore, it is only zero when a = a+ b = 0, meaning that (a, b) = (0, 0).

(b) This is the square of the Cauchy-Schwarz inequality for the inner product in part (a). Explicitly, Cauchy-

Schwarz says that |〈v,w〉| ≤ ||v|| · ||w||. Squaring, and observing that 〈v,w〉 is real, produces 〈v,w〉2 ≤
〈v,v〉 〈w,w〉. Now just take v = (a, b) and w = (c, d) using the inner product from part (a): we
immediately obtain (3ac+ ad+ bc+ bd)2 ≤ (3a2 + 2ab+ b2)(3c2 + 2cd+ d2).
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7.

(a) Note that because {u1,u2,u3} is orthonormal, 〈ui,uj〉 is 0 when i 6= j and 1 when i = j. Expanding
out 〈2u1 − u2 + 4u3,u1 + 2u2 + 2u3〉, we obtain

2 〈u1,u1〉+ 4 〈u1,u2〉+ 8 〈u1,u3〉 − 〈u2,u1〉 − 2 〈u2,u2〉 − 2 〈u2,u3〉+ 4 〈u3,u1〉+ 8 〈u2,u3〉+ 8 〈u3,u3〉

and the only nonzero terms are 2 〈u1,u1〉 − 2 〈u2,u2〉+ 8 〈u3,u3〉 = 2− 2 + 8 = 8 .
More generally, 〈a1u1 + · · ·+ anun, b1u1 + · · ·+ bnun〉 = a1b1 + · · ·+ anbn, as proven on homework 7.

(b) Notice that ||v +w||2 = 〈v +w,v +w〉 = 〈v,v〉 + 〈v,w〉 + 〈w,v〉 + 〈w,w〉 = a + 2 〈v,w〉 + b. So

||v +w||2 will be equal to a+ b precisely when 2 〈v,w〉 = 0, which is to say, precisely when v and w are
orthogonal.
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