MATH 235: Midterm Practice Assignment - Sections 1.1-2.5 For Practice Only - Do NOT hand-in

(P1) True of False?? For each of the following, decide if the statement is true or false. Fully justify for your answer.
(a) In a finite dimensional vector space all bases have the same number of vectors.
(b) If V is a vector space with $1 \leq \operatorname{dim}(V)=n<\infty$, then V has exactly one subspace of dimension 0 and exactly one subspace of dimension n.
(c) In a vector space V with $\operatorname{dim}(V)=n<\infty$, a set of k vectors is linearly independent if and only if $k \leq n$.
(d) In a vector space V with $\operatorname{dim}(V)=n<\infty$, a set of k vectors is generates V if and only if $k \geq n$.
(e) For $A \in M_{n \times n}(\mathbb{R}), L_{A}$ is onto if and only if $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(f) For a square matrix $A \in M_{n \times n}(\mathbb{R})$, the system $A \mathbf{x}=\mathbf{0}$ only has the trivial solution if and only if the column vectors of A are a basis for \mathbb{R}^{n}.
(g) If A is an $m \times n$ matrix with $\operatorname{rank}\left(L_{A}\right)=m$, then the system $A \mathbf{x}=\mathbf{b}$ always has a solution.
(h) If S_{1} is linearly dependent and $S_{1} \subset S_{2}$, then S_{2} is linearly dependent.
(P2) True of False?? For each of the following, decide if the statement is true or false. Fully justify for your answer. Throughout, assume V is a vector space with $\operatorname{dim}(V)=n<\infty$ and $T: V \rightarrow W$ is linear.
(a) If $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ is a basis for $N(T)$, then $k \leq n$.
(b) If $\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{k}\right\}$ is a basis for $R(T)$, then $k \leq n$.
(c) If $\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{m}\right\}$ generates V, then $\left\{T\left(\mathbf{x}_{1}\right), \cdots, T\left(\mathbf{x}_{m}\right)\right\}$ generates W.
(d) If $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ is a basis for $N(T)$ and $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ is a basis for V, then $\left\{T\left(\mathbf{v}_{k+1}\right), \cdots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis for $R(T)$.
(P3) Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear where V, W, Z are finite dimensional vector spaces.
(a) Prove that $N(T)$ is a subspace of $N(U T)$.
(b) Prove that if U is 1-1, then $N(T)=N(U T)$.
(c) Prove that if U is 1-1, then $\operatorname{rank}(T)=\operatorname{rank}(U T)$. Is it necessarily true that $R(T)=R(U T)$?
(P4) Find 2×2 matrices A and B such that $A B=O$ but $B A \neq O$. Similarly, find linear transformations $U, T: F^{2} \rightarrow F^{2}$ such that $U T=T_{0}$ (the zero transformation) but $T U \neq T_{0}$.
(P5) Answer each part below.
(a) Find a matrix A such that

$$
A\binom{2}{1}=\binom{1}{0}
$$

and

$$
A\binom{3}{2}=\binom{0}{1}
$$

Is there another matrix satisfying this or is the matrix you found unique?
(b) Find a matrix B satisfying

$$
B\binom{1}{1}=\binom{1}{0}
$$

and

$$
B\binom{2}{2}=\binom{2}{0}
$$

Is there another matrix satisfying this or is the matrix you found unique?
(P6) (a) Let V and W be vector spaces with $\operatorname{dim}(V)=\operatorname{dim}(W)<\infty$ and $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}\right\}$, $\gamma=\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{n}\right\}$ be bases on V and W respectively. Construct an isomorphism from V onto W in the most reasonable way possible in the context of this problem. [Hint: see the proof of Theorem 2.19 - you do not have to prove your map is an isomorphism.]
(b) Construct an isomorphism from \mathbb{R}^{2} to \mathbb{R}^{2} which is not the identity transformation on \mathbb{R}^{2}.
(P7) In each part below, decide if the given vector spaces V and W are isomorphic. If so, construct an isomorphism $T: V \rightarrow W$. If not, explain in just a few words why they are not isomorphic.
(a) $V=\mathbb{R}^{2}$ and $W=\mathbb{R}^{3}$.
(b) $V=\mathbb{R}^{2}$ and $W=M_{2 \times 2}(\mathbb{R})$.
(c) $V=P_{5}(\mathbb{R})$ and $W=M_{3 \times 2}(\mathbb{R})$.
(P8) True of False?? For each of the following, decide if the statement is true or false. Provide brief justification for your answer (you do not have to give full-blown proofs, brief explanations will suffice). In each part, V and W are finite dimensional vector spaces over F with ordered bases β and γ respectively, $T: V \rightarrow W$ is linear, and $A \in M_{n \times n}(F)$.
(a) $T^{-1}: W \rightarrow V$ exists if and only if T is a bijection (i.e. one-to-one and onto).
(b) I_{V} (the identity transformation on V) is invertible and $I_{V}^{-1}=I_{V}$.
(c) The $n \times n$ zero matrix is invertible.
(d) If $\left([T]_{\beta}^{\gamma}\right)^{-1}$ exists, then $\left([T]_{\beta}^{\gamma}\right)^{-1}=\left[T^{-1}\right]_{\beta}^{\gamma}$.
(e) A is invertible if and only if L_{A} is invertible, and in this case $L_{A}^{-1}=L_{A^{-1}}$.
(f) A is invertible if and only if L_{A} is an isomorphism from F^{n} onto itself.
(P9) Let $T: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be the linear map defined by $T(a+b x)=(-b, a+2 b)$.
(a) Find $[T]_{\beta}^{\gamma}$ where β, γ are the standard ordered bases on P_{1} and \mathbb{R}^{2} respectively.
(b) Find $\left([T]_{\beta}^{\gamma}\right)^{-1}$.
(c) Use part (b) to find a formula for $T^{-1}(c, d)$.
(P10) True of False?? For each of the following, decide if the statement is true or false. Provide brief justification for your answer (you do not have to give full-blown proofs, brief explanations will suffice). In each part, T is a linear operator on a finite dimensional vector space $V, \beta=\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \cdots, \mathbf{x}_{\mathbf{n}}\right\}$ and $\beta^{\prime}=\left\{\mathbf{x}_{\mathbf{1}}^{\prime}, \mathbf{x}_{\mathbf{2}}^{\prime}, \cdots, \mathbf{x}_{\mathbf{n}}^{\prime}\right\}$ are both bases for V, and Q is the change of coordinates matrix that changes β^{\prime} coordinates into β coordinates.
(a) $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$.
(b) The j th column of Q is $\left[x_{j}\right]_{\beta^{\prime}}$.
(c) Q^{-1} necessarily exists and it is the change of coordinates matrix from β to β^{\prime} coordinates.
(d) $[T]_{\beta}=Q[T]_{\beta^{\prime}} Q^{-1}$.
(e) If γ is another basis for V and P is the change of coordinates matrix from β to γ coordinates, then $P Q$ is the change of coordinates matrix from β^{\prime} to γ coordinates.
(P11) Let β be the standard ordered basis for $\mathbb{R}^{2}, \alpha=\left\{\binom{1}{1},\binom{1}{-1}\right\}$, and $\gamma=\left\{\binom{2}{1},\binom{-1}{3}\right\}$.
(a) Find Q_{1} and Q_{2}, where Q_{1} is the change of coordinates matrix from α to β and Q_{2} is the change of coordinates matrix from γ to β.
(b) Use your answer from part (a) to find the change of coordinates matrices from β to α and β to γ.
(c) Use your answers from parts (a) and (b) to find the change of coordinates matrix from α to γ.
(d) For the matrix

$$
A=\left(\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right)
$$

find $\left[L_{A}\right]_{\beta},\left[L_{A}\right]_{\alpha}$, and $\left[L_{A}\right]_{\gamma}$. Note: it will help to utilize the matrices you found in the previous parts of this problem.
$\left(\mathbf{P 1 2)}\right.$ Let β be the standard ordered basis on $P_{1}, \beta^{\prime}=\{1+2 x, 1-x\}$.
(a) Use a change of coordinates matrix to find $\left[p_{1}\right]_{\beta^{\prime}},\left[p_{2}\right]_{\beta^{\prime}}$, where $p_{1}=3-2 x, p_{2}=1+4 x$.
(b) Let T be the linear operator on P_{1} defined by $T(p)=p^{\prime}$, the derivative of p. Use theorem 2.23 to find $[T]_{\beta^{\prime}}$.

