MATH 235: Midterm Practice Assignment - Sections 1.1-2.5 For Practice Only – Do NOT hand-in

(P1) True of False?? For each of the following, decide if the statement is true or false. Fully justify for your answer.

(a) In a finite dimensional vector space all bases have the same number of vectors.

(b) If V is a vector space with $1 \leq \dim(V) = n < \infty$, then V has exactly one subspace of dimension 0 and exactly one subspace of dimension n.

(c) In a vector space V with $\dim(V) = n < \infty$, a set of k vectors is linearly independent if and only if $k \le n$.

(d) In a vector space V with $\dim(V) = n < \infty$, a set of k vectors is generates V if and only if $k \ge n$.

(e) For $A \in M_{n \times n}(\mathbb{R})$, L_A is onto if and only if $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

(f) For a square matrix $A \in M_{n \times n}(\mathbb{R})$, the system $A\mathbf{x} = \mathbf{0}$ only has the trivial solution if and only if the column vectors of A are a basis for \mathbb{R}^n .

(g) If A is an $m \times n$ matrix with rank $(L_A) = m$, then the system $A\mathbf{x} = \mathbf{b}$ always has a solution.

(h) If S_1 is linearly dependent and $S_1 \subset S_2$, then S_2 is linearly dependent.

(P2) True of False?? For each of the following, decide if the statement is true or false. Fully justify for your answer. Throughout, assume V is a vector space with $\dim(V) = n < \infty$ and $T: V \to W$ is linear.

- (a) If $\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$ is a basis for N(T), then $k \leq n$.
- (b) If $\{\mathbf{w}_1, \cdots, \mathbf{w}_k\}$ is a basis for R(T), then $k \leq n$.
- (c) If $\{\mathbf{x}_1, \cdots, \mathbf{x}_m\}$ generates V, then $\{T(\mathbf{x}_1), \cdots, T(\mathbf{x}_m)\}$ generates W.

(d) If $\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$ is a basis for N(T) and $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ is a basis for V, then $\{T(\mathbf{v}_{k+1}), \cdots, T(\mathbf{v}_n)\}$ is a basis for R(T).

(P3) Let $T: V \to W$ and $U: W \to Z$ be linear where V, W, Z are finite dimensional vector spaces.

- (a) Prove that N(T) is a subspace of N(UT).
- (b) Prove that if U is 1-1, then N(T) = N(UT).

(c) Prove that if U is 1-1, then $\operatorname{rank}(T) = \operatorname{rank}(UT)$. Is it necessarily true that R(T) = R(UT)?

(P4) Find 2 × 2 matrices A and B such that AB = O but $BA \neq O$. Similarly, find linear transformations $U, T : F^2 \to F^2$ such that $UT = T_0$ (the zero transformation) but $TU \neq T_0$.

(P5) Answer each part below.

(a) Find a matrix A such that

and

$$A\begin{pmatrix}2\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$$

$$A\begin{pmatrix}3\\2\end{pmatrix} = \begin{pmatrix}0\\1\end{pmatrix}$$

Is there another matrix satisfying this or is the matrix you found unique?

(b) Find a matrix *B* satisfying

$$B\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$$
$$B\begin{pmatrix}2\\2\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}$$

and

Is there another matrix satisfying this or is the matrix you found unique?

(P6) (a) Let V and W be vector spaces with $\dim(V) = \dim(W) < \infty$ and $\beta = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, $\gamma = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ be bases on V and W respectively. Construct an isomorphism from V onto W in the most reasonable way possible in the context of this problem. [Hint: see the proof of Theorem 2.19 - you do not have to prove your map is an isomorphism.]

(b) Construct an isomorphism from \mathbb{R}^2 to \mathbb{R}^2 which is not the identity transformation on \mathbb{R}^2 .

(P7) In each part below, decide if the given vector spaces V and W are isomorphic. If so, construct an isomorphism $T: V \to W$. If not, explain in just a few words why they are not isomorphic.

(a)
$$V = \mathbb{R}^2$$
 and $W = \mathbb{R}^3$.

(b) V = ℝ² and W = M_{2×2}(ℝ).
(c) V = P₅(ℝ) and W = M_{3×2}(ℝ).

(P8) True of False?? For each of the following, decide if the statement is true or false. Provide brief justification for your answer (you do not have to give full-blown proofs, brief explanations will suffice). In each part, V and W are finite dimensional vector spaces over F with ordered bases β and γ respectively, $T: V \to W$ is linear, and $A \in M_{n \times n}(F)$.

- (a) $T^{-1}: W \to V$ exists if and only if T is a bijection (i.e. one-to-one and onto).
- (b) I_V (the identity transformation on V) is invertible and $I_V^{-1} = I_V$.
- (c) The $n \times n$ zero matrix is invertible.
- (d) If $([T]_{\beta}^{\gamma})^{-1}$ exists, then $([T]_{\beta}^{\gamma})^{-1} = [T^{-1}]_{\beta}^{\gamma}$.
- (e) A is invertible if and only if L_A is invertible, and in this case $L_A^{-1} = L_{A^{-1}}$.
- (f) A is invertible if and only if L_A is an isomorphism from F^n onto itself.

(P9) Let $T: P_1(\mathbb{R}) \to \mathbb{R}^2$ be the linear map defined by T(a+bx) = (-b, a+2b).

- (a) Find $[T]^{\gamma}_{\beta}$ where β , γ are the standard ordered bases on P_1 and \mathbb{R}^2 respectively.
- (b) Find $([T]_{\beta}^{\gamma})^{-1}$.
- (c) Use part (b) to find a formula for $T^{-1}(c, d)$.

(P10) True of False?? For each of the following, decide if the statement is true or false. Provide brief justification for your answer (you do not have to give full-blown proofs, brief explanations will suffice). In each part, T is a linear operator on a finite dimensional vector space $V, \beta = {\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}}$ and $\beta' = {\mathbf{x'_1}, \mathbf{x'_2}, \dots, \mathbf{x'_n}}$ are both bases for V, and Q is the change of coordinates matrix that changes β' coordinates into β coordinates.

- (a) $Q = [I_V]^{\beta}_{\beta'}$.
- (b) The *j*th column of Q is $[x_j]_{\beta'}$.
- (c) Q^{-1} necessarily exists and it is the change of coordinates matrix from β to β' coordinates.
- (d) $[T]_{\beta} = Q[T]_{\beta'}Q^{-1}$.

(e) If γ is another basis for V and P is the change of coordinates matrix from β to γ coordinates, then PQ is the change of coordinates matrix from β' to γ coordinates.

(P11) Let β be the standard ordered basis for \mathbb{R}^2 , $\alpha = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$, and

$$\gamma = \left\{ \begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} -1\\3 \end{pmatrix} \right\}.$$

(a) Find Q_1 and Q_2 , where Q_1 is the change of coordinates matrix from α to β and Q_2 is the change of coordinates matrix from γ to β .

(b) Use your answer from part (a) to find the change of coordinates matrices from β to α and β to γ .

(c) Use your answers from parts (a) and (b) to find the change of coordinates matrix from α to γ .

(d) For the matrix

$$A = \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix}$$

find $[L_A]_{\beta}$, $[L_A]_{\alpha}$, and $[L_A]_{\gamma}$. Note: it will help to utilize the matrices you found in the previous parts of this problem.

(P12) Let β be the standard ordered basis on P_1 , $\beta' = \{1 + 2x, 1 - x\}$.

(a) Use a change of coordinates matrix to find $[p_1]_{\beta'}$, $[p_2]_{\beta'}$, where $p_1 = 3 - 2x$, $p_2 = 1 + 4x$.

(b) Let T be the linear operator on P_1 defined by T(p) = p', the derivative of p. Use theorem 2.23 to find $[T]_{\beta'}$.