MATH 235: Homework 4 - Sections 2.1-2.3 Due Saturday, 7/13 at 1pm on Gradescope

(P1) Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is linear and that T((1,2)) = (3,4) and T((1,3)) = (0,1). Find T((1,0)). Is T one-to-one? Justify your answer.

(P2) You are given two maps between vector spaces over the same field. For each map

- (i) Show that it is linear.
- (ii) Decide whether it is one-to-one or not (with justification).
- (iii) Decide whether it is onto or not (with justification).

(a)
$$T: P_3(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$
 defined by $T(p) = \begin{pmatrix} p(0) & p'(0) \\ p''(0) & p'''(0) \end{pmatrix}$.

(b) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T((a, b)) = (a, b, a + b).

[Hint: Use Rank-Nullity]

(P3) Let V and W be vector spaces and $T: V \to W$ be linear.

- (a) Show that if V_1 is a subspace of V, then $T(V_1) = \{T(x) \mid x \in V_1\}$ is a subspace of W.
- (b) Show that if W_1 is a subspace of W, then $\{\mathbf{x} \in V : T(\mathbf{x}) \in W_1\}$ is a subspace of V.

(P4) In each of the following parts you are given vector spaces V and W, the ordered basis for these vector spaces β , γ and a linear map $T: V \to W$. Write down $[T]^{\gamma}_{\beta}$.

(a)
$$V = \mathbb{R}^3$$
, $\beta = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, $W = P_2(\mathbb{R}), \gamma = \{1, t, t^2\}$ and $T((a, b, c)) = a + ct^2$

(b)
$$V = M_{2 \times 2}(\mathbb{R}), \beta = \{\mathbf{E}^{11}, \mathbf{E}^{12}, \mathbf{E}^{21}, \mathbf{E}^{22}\}, W = \mathbb{R}^3, \gamma = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$$
 and

$$T(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = (a + d, b + c, a + b + c + d).$$

 \mathbf{E}^{ij} is the matrix whose (i, j) entry is a 1 and all other entries are 0's.

(P5) Let V and W be finite dimensional vector spaces over the same field F and $T: V \to W$ be a one-to-one linear map. Prove each of the following.

(a) A set $L \subseteq V$ is linearly independent if and only if $T(L) \subseteq W$ is linearly independent.

(b) Suppose further that $\dim(V) = \dim(W)$. Then a set $\beta \subseteq V$ is a basis for V if and only if $T(\beta)$ is a basis for W.

(c) Deduce that if $\dim(V) = \dim(W)$, then there exist ordered bases β and γ for V and W respectively such that $[T]^{\gamma}_{\beta}$ is the identity matrix as follows: for any ordered basis β of V choose one by one the elements of a basis γ for W so that the *i*th column of $[T]^{\gamma}_{\beta}$ is \mathbf{e}_i . [Hint:Visualize by drawing a picture]

(P6) Let V, W, and Z be vector spaces, and let $T: V \to W$ and $U: W \to Z$ be linear.

- (a) Prove that if UT is one-to-one, then T is one-to-one. Must U also be one-to-one?
- (b) Prove that if UT is onto, the U is onto. Must T also be onto?
- (c) Prove that if U and T are bijections (one-to-one and onto), then UT is also.

(P7) Let V be a vector space, and let $T: V \to V$ be linear. Prove that $T^2 = T_0$ if and only if $R(T) \subseteq N(T)$.

(P8) Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ and $U: P_2 \to \mathbb{R}^3$ be defined by:

$$T(f) = (2 - x^2)f'' + 2xf' + 3f, \qquad U(a + bx + cx^2) = (a + c, a - b, b)$$

Let β and γ be the standard bases on P_2 and \mathbb{R}^3 respectively.

(a) Compute $[U]^{\gamma}_{\beta}, [T]_{\beta}$, and $[UT]^{\gamma}_{\beta}$ directly. Then use Theorem 2.11 to verify your result.

(b) Let $f(x) = -4 + x - 3x^2$. Compute $[f]_{\beta}$ and $[U(f(x))]_{\gamma}$ directly. Then use $[U]_{\beta}^{\gamma}$ from (a) and Theorem 2.14 to verify your result.