MATH 235: Homework 3

Due Wednesday, 7/10 at 1 pm on Gradescope

(P1) $W=\left\{\left(x_{1}, \ldots, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+\cdots+x_{4}=0\right.$ is a subspace of \mathbb{R}^{4}. The set S below spans W (you do not have to prove this):

$$
S=\left\{\mathbf{v}_{1}=\left(\begin{array}{c}
0 \\
2 \\
1 \\
-3
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}
-2 \\
1 \\
3 \\
-2
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}
2 \\
3 \\
-1 \\
-4
\end{array}\right), \mathbf{v}_{4}=\left(\begin{array}{c}
2 \\
13 \\
4 \\
-19
\end{array}\right), \mathbf{v}_{5}=\left(\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right)\right\}
$$

Determine a subset of S that is a basis for W (justify briefly).
(P2) You are given a set S in a vector space V. Determine whether S is a basis and justify your answers.
(i) $V=\mathbb{R}^{3}$ and

$$
S=\{(1,-1,2),(1,4,-1),(5,5,4)\} .
$$

(ii) $V=P_{3}(\mathbb{R})$ and $S=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$, where

$$
\begin{aligned}
& p_{1}=1-t+t^{2}-t^{3} \\
& p_{2}=1+2 t+3 t^{2}+4 t^{3} \\
& p_{3}=t-t^{2}-t^{3} \\
& p_{4}=t^{2}+t^{3} \\
& p_{5}=1+6 t+4 t^{2}+8 t^{3}
\end{aligned}
$$

(iii) $V=M_{2}(\mathbb{R})$ and

$$
S=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\right\}
$$

(P3) Show that $\beta=\{(1,-1,0),(0,1,1),(-1,0,1)\}$ is a basis for \mathbb{R}^{3}. Find the unique representation of the vector (a, b, c) as a linear combination of the elements of β.
(P4) You are given a vector space V and a subspace $W \subset V$. Write down the dimension of W (with justification).
(i) $V=M_{n}(\mathbb{R})$ and W is the space of skew-symmetric matrices.
(ii) $V=P_{4}(\mathbb{R})$ and W is the space of all polynomials $p(x)$ whose second derivative is zero for all $x \in(-\infty, \infty)$.
(P5) Let $W_{1}=\left\{\mathbf{u} \in \mathbb{R}^{5}: u_{1}+u_{3}+u_{4}=0,2 u_{1}+2 u_{2}+u_{5}=0\right\}$ and $W_{2}=\left\{\mathbf{u} \in \mathbb{R}^{5}: u_{1}+u_{5}=\right.$ $\left.0, u_{2}=u_{3}=u_{4}\right\}$. These are subspaces of \mathbb{R}^{n} (you do not have to prove this).
(a) Find a basis for $W_{1} \cap W_{2}$. (Justify briefly your reasoning)
(b) Extend your basis from part (a) to a basis for W_{1}. (Justify briefly your reasoning)
(P6) Let W_{1} and W_{2} be subspaces of a finite dimensional vector space. Determine necessary and sufficient conditions on W_{1} and W_{2} so that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$.
(P7) Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}$ be vectors in a vector space V. Find necessary and sufficient conditions for $\operatorname{dim}\left(\operatorname{span}\left(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}\right)\right)=\operatorname{dim}\left(\operatorname{span}\left(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}\right\}\right)\right)$.
(P8) Let W_{1} and W_{2} be subspaces of a finite dimensional vector space V with basis β, γ respectively. Suppose that $V=W_{1} \oplus W_{2}$. Show that $\beta \cap \gamma=\emptyset$ and that $\beta \cup \gamma$ is a basis for V.

