MATH 235: Homework 2 Due Monday, $7 / 8$ at 1 pm on Gradescope

(P1) Read the bottom of pg. 22 in the book where the sum of two non-empty subsets is defined. Let W_{1} and W_{2} be subspaces of a vector space V. Prove that $W_{1}+W_{2}$ is the minimal subspace of V that contains both W_{1} and W_{2}. That is, prove it is a subspace containing both W_{1} and W_{2} and that any subspace of V that contains both W_{1} and W_{2} must also contain $W_{1}+W_{2}$.
(P2) Read the bottom of pg. 22 in the book where the direct sum of two vector spaces is defined. Let

$$
W_{1}=\left\{M \in M_{2}(\mathbb{R}): M_{11}=0\right\} \quad \text { and } \quad W_{2}=\left\{M \in M_{2}(\mathbb{R}): M_{12}=M_{21}=M_{22}=0\right\} .
$$

Prove that W_{1} and W_{2} are subspaces of $M_{2}(\mathbb{R})$ and that $M_{2}(\mathbb{R})=W_{1} \oplus W_{2}$.
(P3) Let W_{1} and W_{2} be subspaces of a vector space V. Prove that $V=W_{1} \oplus W_{2}$ if and only if each vector in V can be uniquely written as $x_{1}+x_{2}$, where $x_{1} \in W_{1}$ and $x_{2} \in W_{2}$.
(P4) You are given a set S in a vector space V. Determine whether S spans V. Justify your answers.
(i) $V=\mathbb{R}^{3}$ and

$$
S=\{(1,2,-1),(0,1,1),(2,1,-5),(-3,1,10)\}
$$

(ii) $V=M_{2 \times 2}(\mathbb{R})$ and

$$
S=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\}
$$

(iii) $V=C^{0}[-1,1]$ (the vector space of continuous functions on $[-1,1]$) and $S=\left\{1, t, t^{2}, t^{3}, \ldots\right\}$.
(P5) Show that the span of $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$ is the set of all symmetric 2×2 matrices.
(P6) Let S be a set in a vector space V and \mathbf{v} any vector. Prove that $\operatorname{span}(S)=\operatorname{span}(S \cup\{\mathbf{v}\})$ if and only if $\mathbf{v} \in \operatorname{span}(S)$.
(P7) Prove that a set S in a vector space V is linearly dependent if and only if there exists a proper subset $S^{\prime} \subsetneq S$ with the same span as S.
(P8) You are given a set S in a vector space V. Determine whether S is linearly dependent using exclusively methods developed in this course and justify your answers.
(i) $V=\mathbb{R}^{3}$ and

$$
S=\{(1,2,-1),(2,-3,1),(2,3,-5),\}
$$

(ii) $V=P_{3}(\mathbb{R})$ and

$$
S=\left\{1,1+2 t+t^{2}, 1-2 t+t^{3}, t^{2}+t^{3}\right\}
$$

(iii) $V=\mathcal{F}(\mathbb{R}, \mathbb{R})$ and $S=\left\{t, e^{t}, \sin (t)\right\}$.
(P9) Let \mathbf{u} and \mathbf{v} be vectors in a vector space V. Show that $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent if and only if $\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}\}$ is linearly independent.
(P10) Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a finite set of vectors in a vector space V. Prove that S is linearly dependent if and only if $\mathbf{u}_{1}=0$ or $\mathbf{u}_{k+1} \in \operatorname{span}\left(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}\right)$ for some $1 \leq k<n$.

