MATH 235

Final
May 4, 2015

Course ID number: \qquad
Circle your professor's name:
Mueller
Petridis

- No calculators are allowed on this exam. The use of cell phones, computers, tablets, and so on is not permitted.
- Two sheets of notes are allowed with writing on both sides.
- You must explain your answers, and provide a proof if the question asks for one.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

1. (10 points)

Fix positive integers m, n and consider the vector space \mathbf{V} of all $m \times n$ matrices with entries in the real numbers \mathbf{R}.
(a) Find the dimension of \mathbf{V} and prove your answer. Please carry out all the steps of your proof.
(b) Let \mathbf{P} be the subset of \mathbf{V} consisting of $m \times n$ matrices each of whose row sum is 1 . Prove or disprove: \mathbf{P} is a subspace of \mathbf{V}.
(c) Assume $m \geq 2$ and $n \geq 2$. Find a subspace of \mathbf{V} of dimension 2. Please explain your answer, but you don't have to give a proof.

2. (10 points)

$P_{2}(\mathbf{R})$ is the real vector space of real polynomials of degree at most 2. Let W be the following subset of $P_{2}(\mathbf{R})$:

$$
W=\left\{f \in P_{2}(\mathbf{R}) \mid f(2)=f(1)\right\} .
$$

(a) Prove that W is a vector subspace of $P_{2}(\mathbf{R})$.
(b) Write down a basis for W. You do not need to prove that the set given is a basis, though justification of how you found it must be given.
(c) W is isomorphic to \mathbf{R}^{d} for what value of d ? Justify your answer.

3. (10 points)

Let \mathbf{V} denote the linear span of the following functions from \mathbf{R} to \mathbf{R} : $e^{-2 x}, 1, e^{2 x}$. Also suppose that these functions form an ordered basis β for \mathbf{V}. Let $T: \mathbf{V} \rightarrow \mathbf{V}$ be the linear transformation defined by $(T f)(x)=f(-x)$, and let $D: \mathbf{V} \rightarrow \mathbf{V}$ be the linear transformation defined by $(D f)(x)=\frac{d f(x)}{d x}$.

For the following questions, you must show your calculations, but you need not give a proof.
(a) Find the matrix $[T]_{\beta}$.
(b) Find the matrix $[D]_{\beta}$.
(c) Find the matrix $[T D]_{\beta}$.

4. (10 points)

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be linear and suppose $T^{2} \neq 0$, where $T^{2}=T \circ T$ and 0 denotes the zero map.
(a) Show that $1 \leq \operatorname{rank}\left(T^{2}\right) \leq \operatorname{rank}(T)$.
(b) By considering the possible values of $\operatorname{rank}(T)$ separately, deduce that $R(T)=R\left(T^{2}\right)$, where, say, $R(T)$ is the range of T.

5. (10 points)

Use elementary row and/or column operations to find the determinant of

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & 3 \\
2 & 1 & 1 & 2 \\
0 & 2 & 1 & 3
\end{array}\right)
$$

You must use the method of row and column operations to get any credit for this problem. It's also the easiest way.

6. (10 points)

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear map and β the following basis for \mathbf{R}^{2} :

$$
\beta=\left\{\binom{1}{3},\binom{2}{4}\right\}
$$

Suppose that T is represented by the following matrix A in β :

$$
A:=[T]_{\beta}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

(a) Find the nullity of T showing all your work.
(b) Find the matrix representing T in the standard basis for \mathbf{R}^{2} showing all your work.

7. (10 points)

$P_{1}(\mathbf{R})$ is the real vector space of real polynomials of degree at most 1. Consider the linear maps $T: P_{1}(\mathbf{R}) \rightarrow P_{1}(\mathbf{R})$ and $S: P_{1}(\mathbf{R}) \rightarrow P_{1}(\mathbf{R})$ given by

$$
T(p)(t)=2 p(t)+p^{\prime}(t) \text { and } S(p)(t)=p(t)+(t+1) p^{\prime}(t)
$$

Answer the following questions by performing calculations. You need not give a proof.
(a) Find the eigenvalues of T and S.
(b) Find the corresponding eigenvectors for T and S.
(c) Which of the linear transformations T, S are diagonalizable?

8. (10 points)

Let A and B be real $n \times n$ square matrices.
(a) Suppose that $A B$ is not invertible. Is it true that at least one of A and B is not invertible? Provide a proof or counter example.
(b) Suppose that A has at most $n-1$ nonzero entries, that is at most $n-1$ of the $A_{i j} \neq 0$. Is it true that $\operatorname{det}(A)=0$? Provide a proof or counter example.
(c) Suppose that A and B commute, that is $A B=B A$. Is it true that $\operatorname{det}\left(A^{2}-B^{2}\right)=$ $\operatorname{det}(A-B) \operatorname{det}(A+B)$? Provide a proof or counter example.
(d) Suppose that $A^{k}=I_{n}$ for some positive integer $k>0$. What are the possible values of $\operatorname{det}(A)$? Justify your answer.

9. (10 points)

Recall that we say an $n \times n$ matrix A over the complex numbers is self-adjoint if $A^{*}=A$, where A^{*} is the complex conjugate of the transpose of A.

We call an $n \times n$ matrix A over the complex numbers a Mueller-Petridis matrix if $A^{*}=3 A$.
(a) Give an example of a 2×2 Mueller-Petridis matrix.
(b) Give a complete list of $n \times n$ Mueller-Petridis matrices, and prove your answer.
(c) Suppose A is an $n \times n$ matrix over the complex numbers, and $A^{*}=\lambda A$ for some scalar λ. What are the possible values of λ, and how does λ depend on the matrix A ?
10. (10 points)

Consider the following basis for \mathbf{R}^{4}.

$$
\beta=\left\{\mathbf{w}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right), \mathbf{w}_{3}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right), \mathbf{w}_{4}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)\right\} .
$$

(a) Apply the Gram-Schmidt orthonormalisation process to obtain an orthonormal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$. Show all your work.
(b) Find an orthonormal basis for the orthogonal complement to

$$
\operatorname{span}\left(\left\{\mathbf{w}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)\right\}\right) .
$$

