MATH 235

Final May 4, 2015

Course ID number:

Circle your professor's name:

Mueller

Petridis

- No calculators are allowed on this exam. The use of cell phones, computers, tablets, and so on is not permitted.
- Two sheets of notes are allowed with writing on both sides.
- You must explain your answers, and provide a proof if the question asks for one.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

Fix positive integers m, n and consider the vector space **V** of all $m \times n$ matrices with entries in the real numbers **R**.

(a) Find the dimension of ${\bf V}$ and prove your answer. Please carry out all the steps of your proof.

(b) Let **P** be the subset of **V** consisting of $m \times n$ matrices each of whose row sum is 1. Prove or disprove: **P** is a subspace of **V**.

(c) Assume $m \ge 2$ and $n \ge 2$. Find a subspace of **V** of dimension 2. Please explain your answer, but you don't have to give a proof.

 $P_2(\mathbf{R})$ is the real vector space of real polynomials of degree at most 2. Let W be the following subset of $P_2(\mathbf{R})$:

$$W = \{ f \in P_2(\mathbf{R}) \mid f(2) = f(1) \}.$$

(a) Prove that W is a vector subspace of $P_2(\mathbf{R})$.

(b) Write down a basis for W. You do not need to prove that the set given is a basis, though justification of how you found it must be given.

(c) W is isomorphic to \mathbf{R}^d for what value of d? Justify your answer.

Let **V** denote the linear span of the following functions from **R** to **R**: e^{-2x} , 1, e^{2x} . Also suppose that these functions form an ordered basis β for **V**. Let $T : \mathbf{V} \to \mathbf{V}$ be the linear transformation defined by (Tf)(x) = f(-x), and let $D : \mathbf{V} \to \mathbf{V}$ be the linear transformation defined by $(Df)(x) = \frac{df(x)}{dx}$.

For the following questions, you must show your calculations, but you need not give a proof.

- (a) Find the matrix $[T]_{\beta}$.
- (b) Find the matrix $[D]_{\beta}$.
- (c) Find the matrix $[TD]_{\beta}$.

Let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be linear and suppose $T^2 \neq 0$, where $T^2 = T \circ T$ and 0 denotes the zero map.

(a) Show that $1 \leq \operatorname{rank}(T^2) \leq \operatorname{rank}(T)$.

(b) By considering the possible values of $\operatorname{rank}(T)$ separately, deduce that $R(T) = R(T^2)$, where, say, R(T) is the range of T.

Use elementary row and/or column operations to find the determinant of

$$A = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 1 & 0 & 1 & 3 \\ 2 & 1 & 1 & 2 \\ 0 & 2 & 1 & 3 \end{pmatrix}.$$

You must use the method of row and column operations to get any credit for this problem. It's also the easiest way.

Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be a linear map and β the following basis for \mathbf{R}^2 :

$$\beta = \left\{ \begin{pmatrix} 1\\ 3 \end{pmatrix}, \begin{pmatrix} 2\\ 4 \end{pmatrix} \right\}.$$

Suppose that T is represented by the following matrix A in β :

$$A := [T]_{\beta} = \begin{pmatrix} 1 & 2\\ 3 & 4 \end{pmatrix}.$$

(a) Find the nullity of T showing all your work.

(b) Find the matrix representing T in the standard basis for \mathbf{R}^2 showing all your work.

 $P_1(\mathbf{R})$ is the real vector space of real polynomials of degree at most 1. Consider the linear maps $T: P_1(\mathbf{R}) \to P_1(\mathbf{R})$ and $S: P_1(\mathbf{R}) \to P_1(\mathbf{R})$ given by

$$T(p)(t) = 2p(t) + p'(t)$$
 and $S(p)(t) = p(t) + (t+1)p'(t)$.

Answer the following questions by performing calculations. You need not give a proof.

- (a) Find the eigenvalues of T and S.
- (b) Find the corresponding eigenvectors for T and S.
- (c) Which of the linear transformations T, S are diagonalizable?

Let A and B be real $n \times n$ square matrices.

(a) Suppose that AB is not invertible. Is it true that at least one of A and B is not invertible? Provide a proof or counter example.

(b) Suppose that A has at most n-1 nonzero entries, that is at most n-1 of the $A_{ij} \neq 0$. Is it true that $\det(A) = 0$? Provide a proof or counter example.

(c) Suppose that A and B commute, that is AB = BA. Is it true that $det(A^2 - B^2) = det(A - B) det(A + B)$? Provide a proof or counter example.

(d) Suppose that $A^k = I_n$ for some positive integer k > 0. What are the possible values of det(A)? Justify your answer.

Recall that we say an $n \times n$ matrix A over the complex numbers is self-adjoint if $A^* = A$, where A^* is the complex conjugate of the transpose of A.

We call an $n \times n$ matrix A over the complex numbers a Mueller-Petridis matrix if $A^* = 3A$.

(a) Give an example of a 2×2 Mueller-Petridis matrix.

(b) Give a complete list of $n \times n$ Mueller-Petridis matrices, and prove your answer.

(c) Suppose A is an $n \times n$ matrix over the complex numbers, and $A^* = \lambda A$ for some scalar

 λ . What are the possible values of λ , and how does λ depend on the matrix A?

Consider the following basis for \mathbb{R}^4 .

$$\beta = \left\{ \mathbf{w}_1 = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \mathbf{w}_2 = \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix}, \mathbf{w}_3 = \begin{pmatrix} 1\\-1\\1\\0 \end{pmatrix}, \mathbf{w}_4 = \begin{pmatrix} 1\\-1\\1\\1\\-1 \end{pmatrix} \right\}.$$

(a) Apply the Gram-Schmidt orthonormalisation process to obtain an orthonormal basis $\{v_1, v_2, v_3, v_4\}$. Show all your work.

(b) Find an orthonormal basis for the orthogonal complement to

span
$$\left(\left\{ \mathbf{w}_1 = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \mathbf{w}_2 = \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix} \right\} \right).$$