MTH 235: Linear Algebra

Final Exam

May 7, 2013

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Giorgis Petridis	
Mark Herman	

- There are no notes, textbooks, etc. allowed on this exam. The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your final answers.

QUESTION	VALUE	SCORE
1	12	
2	10	
3	10	
4	12	
5	12	
6	10	
7	8	
8	12	
9	14	
TOTAL	100	

1. (12 points) True or false? Decide whether the following statements are true or false. If they are true prove them briefly (stating clearly any results you use); if they are false provide a counter example.
(a) Let A and B be $n \times n$ real matrices. Then, $\operatorname{rank}(A B)=\min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.
(b) If A is an $n \times n$ real matrix, then A and A^{t} have the same eigenvalues.
(c) Let V be an inner product space and $W \subset V$ be a subspace with basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ and $\mathbf{v} \in V$ be a vector that satisfies $\left\langle\mathbf{v}, \mathbf{w}_{i}\right\rangle=0$ for all $i=1, \ldots, k$. Then $\mathbf{v} \in W^{\perp}$.
2. (10 points) Let V be a finite dimensional vector space and $W_{1}, W_{2} \subset V$ be subspaces.
(a) Prove that $W_{1}+W_{2}$ is a subspace of V.
(b) Suppose further that $W_{1}+W_{2}=V$. Can $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)<\operatorname{dim}(V)$? Justify briefly.
3. (10 points) Let $V=M_{2 \times 2}(\mathbb{R})$, the space of 2×2 real matrices, and

$$
W=\left\{A \in M_{2 \times 2}(\mathbb{R}):\binom{1}{1} \text { is an eigenvector of } A\right\}
$$

which is a subspace of V (you do not need to prove this). Find a basis for W showing your work. You do not need to justify why the set is a basis. Furthermore find the appropriate value of n such that W is isomorphic to \mathbb{R}^{n}.
4. (12 points) Let $T: V \rightarrow V$ be a linear operator on a vector space V.
(a) Show that if $R\left(T^{k}\right)=R\left(T^{k+1}\right)$, then $R\left(T^{k+1}\right)=R\left(T^{k+2}\right)$.
(b) Show that if $\operatorname{dim}(V)=2$ and $T^{2} \neq T_{0}$, where T_{0} is the zero operator, then $T^{k} \neq T_{0}$ for all $k=1,2, \ldots$
5. (12 points) Let V, W be finite dimensional vector spaces over the same field, $\beta=$ $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V and $T: V \rightarrow W$ be a linear one-to-one map.
(a) Show that $T(\beta)=\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a linearly independent set in W.
(b) Assuming further that $\operatorname{dim}(V)=\operatorname{dim}(W)$, prove that $T(\beta)$ is a basis for W.
(c) Use part (b) to construct bases α and γ for V and W respectively such that $[T]_{\alpha}^{\gamma}$ is the identity matrix.
6. (10 points) You are given a vector space V with an ordered basis β and a linear operator $T: V \rightarrow V$. Find the matrix $[T]_{\beta}$ showing your work.
(a) $V=\mathbb{R}^{3}, \beta=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ and $T\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}a+b \\ b+c \\ c+a\end{array}\right)$.
(b) $V=M_{2 \times 2}(\mathbb{R})$, the space of 2×2 real matrices, $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ and $T(A)=A^{t}+2 A$.
7. (8 points) Find k that satisfies:

$$
\operatorname{det}\left(\begin{array}{ccc}
b_{3}-c_{3} & b_{2}-c_{2} & b_{1}-c_{1} \\
a_{3}+3 c_{3} & a_{2}+3 c_{2} & a_{1}+3 c_{1} \\
a_{3}+b_{3}+c_{3} & a_{2}+b_{2}+c_{2} & a_{1}+b_{1}+c_{1}
\end{array}\right)=k \operatorname{det}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) .
$$

Show your work.
8. (12 points) Let $W=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$ and endow it with the (usual) dot product.
(a) Find an orthonormal basis for W.
(b) Let P_{W} be the projection on W. Calculate $P_{W}\left(\left(\begin{array}{l}4 \\ 0 \\ 0 \\ 0\end{array}\right)\right)$.
9. (14 points) In this question you are asked to diagonalize a linear map and a symmetric matrix.
(a) Let $T: P_{2} \rightarrow P_{2}$ be the linear operator given by $T(p)(x)=p(0)+p^{\prime}(1) x+p^{\prime \prime}(2) x^{2}$, where P_{2} is the space of real polynomials of degree at most 2 . Find a basis β such that $[T]_{\beta}$ is diagonal and also write down the diagonal matrix $[T]_{\beta}$.
(b) Let $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 0\end{array}\right)$, with characteristic polynomial $(1+t)(1-t)(2-t)$. Find a matrix P such that $D=P^{t} A P$ is a diagonal matrix and also write down D.

