MTH 235: Linear Algebra

Final Exam May 7, 2013

NAME (please print legibly): ______ Your University ID Number: ______ Indicate your instructor with a check in the box:

Giorgis Petridis	
Mark Herman	

- There are no notes, textbooks, etc. allowed on this exam. The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your final answers.

QUESTION	VALUE	SCORE
1	12	
2	10	
3	10	
4	12	
5	12	
6	10	
7	8	
8	12	
9	14	
TOTAL	100	

1. (12 points) True or false? Decide whether the following statements are true or false. If they are true prove them briefly (stating clearly any results you use); if they are false provide a counter example.

(a) Let A and B be $n \times n$ real matrices. Then, $\operatorname{rank}(AB) = \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

(b) If A is an $n \times n$ real matrix, then A and A^t have the same eigenvalues.

(c) Let V be an inner product space and $W \subset V$ be a subspace with basis $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ and $\mathbf{v} \in V$ be a vector that satisfies $\langle \mathbf{v}, \mathbf{w}_i \rangle = 0$ for all $i = 1, \ldots, k$. Then $\mathbf{v} \in W^{\perp}$.

- 2. (10 points) Let V be a finite dimensional vector space and $W_1, W_2 \subset V$ be subspaces.
- (a) Prove that $W_1 + W_2$ is a subspace of V.

(b) Suppose further that $W_1 + W_2 = V$. Can $\dim(W_1) + \dim(W_2) < \dim(V)$? Justify briefly.

3. (10 points) Let $V = M_{2\times 2}(\mathbb{R})$, the space of 2×2 real matrices, and

$$W = \{A \in M_{2 \times 2}(\mathbb{R}) : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ is an eigenvector of } A\},\$$

which is a subspace of V (you do not need to prove this). Find a basis for W showing your work. You do not need to justify why the set is a basis. Furthermore find the appropriate value of n such that W is isomorphic to \mathbb{R}^n .

4. (12 points) Let $T: V \to V$ be a linear operator on a vector space V.

(a) Show that if $R(T^k) = R(T^{k+1})$, then $R(T^{k+1}) = R(T^{k+2})$.

(b) Show that if dim(V) = 2 and $T^2 \neq T_0$, where T_0 is the zero operator, then $T^k \neq T_0$ for all k = 1, 2, ...

5. (12 points) Let V, W be finite dimensional vector spaces over the same field, $\beta = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ be a basis for V and $T: V \to W$ be a linear one-to-one map.

(a) Show that $T(\beta) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\}$ is a linearly independent set in W.

(b) Assuming further that $\dim(V) = \dim(W)$, prove that $T(\beta)$ is a basis for W.

(c) Use part (b) to construct bases α and γ for V and W respectively such that $[T]^{\gamma}_{\alpha}$ is the identity matrix.

6. (10 points) You are given a vector space V with an ordered basis β and a linear operator $T: V \to V$. Find the matrix $[T]_{\beta}$ showing your work.

(a)
$$V = \mathbb{R}^3$$
, $\beta = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$ and $T \begin{pmatrix} a\\b\\c \end{pmatrix} = \begin{pmatrix} a+b\\b+c\\c+a \end{pmatrix}$.

(b) $V = M_{2 \times 2}(\mathbb{R})$, the space of 2×2 real matrices, $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ and $T(A) = A^t + 2A$.

7. (8 points) Find k that satisfies:

$$\det \begin{pmatrix} b_3 - c_3 & b_2 - c_2 & b_1 - c_1 \\ a_3 + 3c_3 & a_2 + 3c_2 & a_1 + 3c_1 \\ a_3 + b_3 + c_3 & a_2 + b_2 + c_2 & a_1 + b_1 + c_1 \end{pmatrix} = k \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

Show your work.

8. (12 points) Let
$$W = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\}$$
 and endow it with the (usual) dot

product.

(a) Find an orthonormal basis for W.

(b) Let P_W be the projection on W. Calculate $P_W\begin{pmatrix} 4\\0\\0\\0 \end{pmatrix}$.

9. (14 points) In this question you are asked to diagonalize a linear map and a symmetric matrix.

(a) Let $T: P_2 \to P_2$ be the linear operator given by $T(p)(x) = p(0) + p'(1)x + p''(2)x^2$, where P_2 is the space of real polynomials of degree at most 2. Find a basis β such that $[T]_{\beta}$ is diagonal and also write down the diagonal matrix $[T]_{\beta}$.

(b) Let $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$, with characteristic polynomial (1 + t)(1 - t)(2 - t). Find a matrix P such that $D = P^t A P$ is a diagonal matrix and also write down D.