Math 235: Midterm 2: Solutions

University of Rochester
November 16, 2021

Question:	1	2	3	4	5	Total
Points:	10	20	20	30	20	100

1. (10 points) Select either true or false, completely filling in the relevant bubble.
(a) An $m \times n$ system $A x=0$ is always consistent.
\bigcirc True \bigcirc False $\sqrt{ }$ True

Solution:

The zero vector in \mathbb{F}^{n} is always a solution to $A x=0$.
(b) Let V be a finite dimensional vector space and $T: V \rightarrow V$ be a linear transformation. Then, $\operatorname{det}[T]_{\beta}=\operatorname{det}[T]_{\gamma}$ for any two ordered bases β and γ of V.
\bigcirc True \bigcirc False $\sqrt{ }$ True

Solution:

Any two matrix representations of a linear transformation are similar, and thus have the same determinant.
(c) If λ is an eigenvalue of a linear operator T, then λ^{n} is an eigenvalue of T^{n} for all $n \geq 1$.
\bigcirc True \bigcirc False $\sqrt{ }$ True

Solution:

Proof by induction on n. We show that if v is an eigenvector of T with eigenvalue λ, then v is an eigenvector of T^{n} with eigenvalue λ^{n}. If $n=1$ the result is trivial. Suppose $n>1$. By the inductive hypothesis, v is an eigenvector of T^{n-1} with eigenvalue λ^{n-1}. Then, $T^{n}(v)=T\left(T^{n-1}(v)\right)=T\left(\lambda^{n-1} v\right)=\lambda^{n-1} T(v)=$ $\lambda^{n-1} \lambda v=\lambda^{n} v . \mathrm{a}$
(d) Let A be a square matrix with reduced row echelon form B. Then, $\operatorname{det} A=\operatorname{det} B$. \bigcirc True \bigcirc False $\sqrt{ }$ False

Solution:

Not all elementary row operations preserve determinants.
(e) Let $T: V \rightarrow W$ be a linear transformation. If $\operatorname{dim}(V)=\operatorname{dim}(W)$, then T is invertible.
\bigcirc True \bigcirc False $\sqrt{ }$ False

Solution:

Let T be the zero transformation from V to W. This is not an isomorphism if $\operatorname{dim} V, \operatorname{dim} W>0$.
2. Let $B=\left[\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right] \in M_{2}(\mathbb{R})$. Define the linear transformation $T_{B}: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ by

$$
T_{B}(A)=\operatorname{tr}(A B) .
$$

(a) (5 points) Compute $\operatorname{rank}\left(T_{B}\right)$.

Solution:
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}(\mathbb{R})$. Then,

$$
T_{B}(A)=\operatorname{tr}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right]\right)=\operatorname{tr}\left[\begin{array}{ll}
-a & a+b \\
-c & c+d
\end{array}\right]=-a+c+d
$$

In particular, we can let $a=c=0$, and letting d range through all real numbers we see that T_{B} is onto, $\operatorname{sorank}\left(T_{B}\right)=1$.
(b) (5 points) Show that $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$ is in the nullspace $N\left(T_{B}\right)$.

Solution:

This is a pure calculation. If A is as given in (b), then the equation in the solution of (a) shows that $T_{B}(A)=-1+2-1=0$.
(c) (10 points) Find a basis for $N\left(T_{B}\right)$ which contains A.

Solution:

By the Dimension Theorem, $\operatorname{dim} N\left(T_{B}\right)=3$. Let $A^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and $A^{\prime \prime}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
By the calculation in (a), both of these are in $N\left(T_{B}\right)$. Considering the top right entries of the matrices A, A^{\prime} and $A^{\prime \prime}$, we see that any linear combination of those three to the zero matrix would have a coefficient of zero for A. The matrices
A^{\prime} and $A^{\prime \prime}$ are clearly linearly independent, so the remaining coefficients of A^{\prime} and $A^{\prime \prime}$ would also have to be zero. Hence $\left\{A, A^{\prime}, A^{\prime \prime}\right\}$ is a set of three linearly independent matrices in the three dimensional space $N\left(T_{B}\right)$, and is thus a basis for $N\left(T_{B}\right)$.
3. Let $A \in M_{3 \times 4}(\mathbb{C})$ be the matrix whose reduced row echelon form is given by

$$
\left[\begin{array}{cccc}
1 & i & 0 & 1 \\
0 & 0 & 1 & -i \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Assume that the first and third columns, respectively, of A are

$$
\left[\begin{array}{c}
i \\
-1 \\
i
\end{array}\right] \text { and }\left[\begin{array}{c}
1+i \\
1-i \\
2 i
\end{array}\right] .
$$

(a) (10 points) Find the matrix A.

Solution:

The second column of A is

$$
i\left[\begin{array}{c}
i \\
-1 \\
i
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-i \\
-1
\end{array}\right]
$$

while the fourth column of A is

$$
\left[\begin{array}{c}
i \\
-1 \\
i
\end{array}\right]-i\left[\begin{array}{c}
1+i \\
1-i \\
2 i
\end{array}\right]=\left[\begin{array}{c}
i-(i-1) \\
-1-(i+1) \\
i-(-2)
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2-i \\
2+i
\end{array}\right] .
$$

Hence,

$$
A=\left[\begin{array}{cccc}
i & -1 & 1+i & 1 \\
-1 & -i & 1-i & -2-i \\
i & -1 & 2 i & 2+i
\end{array}\right]
$$

(b) (10 points) Find a basis for the solution space to the system $A x=0$.

Solution:

From the reduced row echelon form of A, the solution space for $A x=0$ is

$$
\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \mathbb{C}^{4}: x_{1}=-i x_{2}-x_{4}, x_{2}=z, x_{3}=i x_{4}, x_{4}=w \text { with } z, w \in \mathbb{C}\right\}
$$

In particular, any such solution is of the form

$$
\left[\begin{array}{c}
-i z-w \\
z \\
i w \\
w
\end{array}\right]=z\left[\begin{array}{c}
-i \\
1 \\
0 \\
0
\end{array}\right]+w\left[\begin{array}{c}
-1 \\
0 \\
i \\
1
\end{array}\right]
$$

Hence, the vectors $(-1,0, i, 1)$ and $(-i, 1,0,0)$ span the solution space to $A x=0$, and they are evidently linearly independent, so it follows that they are a basis for the solution space.
4. Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 0 \\
1 & 0 & 3
\end{array}\right] \in M_{3}(\mathbb{R})
$$

(a) (10 points) Compute the characteristic polynomial $f(t)$ of A.

Solution:

We have $f(t)=\operatorname{det}(A-t I)$, so

$$
f(t)=\operatorname{det}\left[\begin{array}{ccc}
1-t & 1 & 0 \\
0 & 2-t & 0 \\
1 & 0 & 3-t
\end{array}\right]
$$

Expanding along the third column,

$$
f(t)=(3-t) \operatorname{det}\left[\begin{array}{cc}
1-t & 1 \\
0 & 2-t
\end{array}\right]=(3-t)(1-t)(2-t)
$$

(b) (10 points) Find the eigenvalues of A.

Solution:

The roots of $f(t)$ are 1,2 and 3 , so those are the eigenvalues of A.
(c) (10 points) Determine if A is diagonalizable. Justify your answer.

Solution:

The matrix A is diagonalizable, since it is a 3×3 matrix with three distinct eigenvalues.
5. (a) (10 points) Let V and W be vector spaces over a field \mathbb{F}, and let $T, U: V \rightarrow W$ be linear transformations. Show that $\operatorname{rank}(T+U) \leq \operatorname{rank}(T)+\operatorname{rank}(U)$.

Solution:

Let $v \in V$. Then, $(T+U)(v)=T(v)+U(v)$, so $R(T+U) \subseteq R(T)+R(U)$, so $\operatorname{rank}(T+U)=\operatorname{dim} R(T+U) \leq \operatorname{dim}(R(T)+R(U))$. Since W is finite dimensional, the dimension of a sum of subspaces is less than or equal to the sum of their dimensions, so $\operatorname{dim}(R(T)+R(U)) \leq \operatorname{dim} R(T)+\operatorname{dim} R(U)=\operatorname{rank}(T)+\operatorname{rank}(U)$. It follows that $\operatorname{rank}(T+U) \leq \operatorname{rank}(T)+\operatorname{rank}(U)$.
(b) (10 points) Let $A, B \in M_{m \times n}(\mathbb{F})$. Show that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.

Solution:

Let $L_{A}, L_{B}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ be the linear transformations associated to the matrices A and B. By definition, $\operatorname{rank}(A)=\operatorname{rank}\left(L_{A}\right), \operatorname{rank}(B)=\operatorname{rank}\left(L_{B}\right)$, and $\operatorname{rank}(A+$ $B)=\operatorname{rank}\left(L_{A+B}\right)=\operatorname{rank}\left(L_{A}+L_{B}\right)$. By (a), $\operatorname{rank}\left(L_{A}+L_{B}\right) \leq \operatorname{rank}\left(L_{A}\right)+$ $\operatorname{rank}\left(L_{B}\right)$, so $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.

