Math 235: Midterm 1

University of Rochester
October 5, 2021

Name:

UR ID: \qquad

- You are allowed one page, single-sided of notes. No other resources are permitted.
- The exam questions are on pages 2-11 of this packet.
- Each part of questions 2 through 6 is on its own page. All work you want graded for that problem should be contained entirely on that page, unless:
- If you need more space on a problem, use the Scratch work pages at the end of the exam, and make sure to make a note on the problem page that you are doing so.
- Do not tear off the scratch work pages.
- Copy and sign the Honor Pledge: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.
\qquad
\qquad
\qquad

Signature:

\qquad

Question:	1	2	3	4	5	6	Total
Points:	10	20	15	15	10	30	100

1. (10 points) Select either true or false, completely filling in the relevant bubble.
(a) The dimension of \mathbb{C} (the set of complex numbers) as vector space over \mathbb{R} (the set of real numbers) is 2 .
\bigcirc True \bigcirc False
(b) Let $V=P(\mathbb{R})$. If $p(x) \in V$, then the set $\{p(x), x p(x)\}$ is linearly dependent in V. \bigcirc True \bigcirc False
(c) The vector $x^{3}-x$ belongs to $\operatorname{Span}\left(x^{3}+x^{2}+x, x^{2}+2 x, x^{2}\right)$ in $P_{3}(\mathbb{F})$, for any field \mathbb{F}. \bigcirc True \bigcirc False
(d) If V is a finite dimensional vector space of dimension n, then V contains a subspace of each dimension i for each $i=0, \ldots, n$.
\bigcirc True \bigcirc False
(e) If V is a finite dimensional vector space over \mathbb{F}_{2} and $\operatorname{dim}(V)=n$, then V contains precisely 2^{n} vectors.
\bigcirc True \bigcirc False
2. (a) (10 points) Let V be a finite dimensional vector space over a field \mathbb{F} and let W be a subspace of V. Show that if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $W=V$.
(b) (10 points) Let V be a finite dimensional vector space over a field \mathbb{F} and let W_{1} and W_{2} be subspaces of V. Show that if $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}+W_{2}\right)$, then $W_{1}=W_{2}$.
3. (15 points) Let V be a vector space over a field \mathbb{F}, and let w, x, y and z be vectors in V. Prove that the set $\{w+x, x+y, y+z, z+w\}$ is linearly dependent in V.
4. (15 points) Let $A \in M_{m \times n}(\mathbb{R})$ be a matrix and $\lambda \in \mathbb{R}$ be a scalar. Show that the set $W=\left\{v \in \mathbb{R}^{n} \mid A v=\lambda v\right\}$ is a subspace of \mathbb{R}^{n}.
5. (10 points) Let V and W be vector spaces over a field \mathbb{F}. Show that a linear transformation $T: V \rightarrow W$ is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.
6. Let $\beta=\left\{x^{2}-x, x-1,2 x\right\}$ be a set of vectors in $P_{2}(\mathbb{R})$.
(a) (10 points) Show that β is a basis for $P_{2}(\mathbb{R})$.
(b) (5 points) Let γ be the standard ordered basis of \mathbb{R}^{2} and $\beta=\left\{x^{2}-x, x-1,2 x\right\}$ be the basis for $P_{2}(\mathbb{R})$ given in (a). If $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ is a linear transformation such that $[T]_{\beta}^{\gamma}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -2\end{array}\right]$, find $T\left(x^{2}+x+1\right)$.
(c) (10 points) Find a basis for $N(T)$ and determine if T is one-to-one.
(d) (5 points) Is T onto? Find $\operatorname{dim}(R(T))$.

Scratch work (first page)

Scratch work (second page) - DO NOT REMOVE

Scratch work (third page) - DO NOT REMOVE

