Math 235: Final Exam

University of Rochester

December 12, 2021

Name:

UR ID: \qquad

- You are allowed one page, single-sided of notes. No other resources are permitted.
- The exam questions are on pages 2-16 of this packet.
- Each part of each question is on its own page. All work you want graded for that problem should be contained entirely on that page, unless:
- If you need more space on a problem, use the Scratch work pages at the end of the exam, and make sure to make a note on the problem page that you are doing so.
- Do not tear off the scratch work pages.
- Copy and sign the Honor Pledge: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.
\qquad
\qquad
\qquad

Signature:

\qquad

Question:	1	2	3	4	5	6	Total
Points:	20	15	10	20	15	20	100

1. (20 points) Select either true or false, completely filling in the relevant bubble.
(a) The function $T:\left(\mathbb{F}_{2}\right)^{2} \rightarrow\left(\mathbb{F}_{2}\right)^{2}$ given by $T(x, y)=\left(x+y, x^{2}+y^{2}\right)$ is a linear transformation.
\bigcirc True \bigcirc False
(b) If $T: V \rightarrow V$ is a linear transformation such that $T^{k}=I$ for some integer $k \geq 2$, then T is invertible.
\bigcirc True \bigcirc False
(c) Let $W \subseteq V$ be a subspace such that $\operatorname{dim} W=0$. Then $\beta=\left\{0_{V}\right\}$ is a basis for W. \bigcirc TrueFalse
(d) Any linear transformation $T: V \rightarrow W$ has a matrix representation in some space $M_{n}(\mathbb{F})$.
\bigcirc True \bigcirc False
(e) The set of solutions of a linear system $A x=b$ is always a subspace.
\bigcirc TrueFalse
(f) If the system $m \times n$ system $A x=b$ is consistent, then it has a unique solution.True False
(g) The function det: $M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ is a linear transformation.
\bigcirc True \bigcirc False
(h) If $A \in M_{n}(\mathbb{R})$, then $\operatorname{det}\left(A A^{T}\right) \geq 0$.
\bigcirc True \bigcirc False
(i) If A and B are similar matrices in $M_{n}(\mathbb{F})$, then A and B have the same eigenvalues. \bigcirc True \bigcirc False
(j) If u and v be eigenvectors of a matrix $A \in M_{n}(\mathbb{R})$ associated to distinct eigenvalues λ and μ, then u and v are orthogonal.
\bigcirc True \bigcirc False
(k) Let $u, v, w \in V$ be vectors in an inner product space. If $u \perp v$ and $v \perp w$, then $u \perp w$.
\bigcirc True \bigcirc False
(1) Any orthogonal set of vectors is linearly independent.
\bigcirc True \bigcirc False
2. Consider the the following system of linear equations in \mathbb{R}^{4} :

$$
\begin{aligned}
2 x_{1}-2 x_{2}+x_{3}-3 x_{4} & =b_{1} \\
-x_{1}+x_{2}+2 x_{4} & =b_{2} \\
x_{3}+x_{4} & =b_{3}
\end{aligned}
$$

(a) (7 points) Find a basis for the subspace of \mathbb{R}^{4} consisting of the solutions to the system when $\left(b_{1}, b_{2}, b_{3}\right)=0 \in \mathbb{R}^{3}$.
(b) (8 points) Find a basis for the subspace of \mathbb{R}^{3} consisting of the set of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ such that the system is consistent.
3. Let $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 0 & 1 & 2 \\ -1 & 0 & -1\end{array}\right] \in M_{3}(\mathbb{R})$.
(a) (5 points) Find the characteristic polynomial of A.
(b) (5 points) Show that $A^{-1}=\frac{1}{3}\left(2 I-A^{2}\right)$. There is an easy way to do this and a hard way to do this.
4. Let $V=P_{3}(\mathbb{R})$ with inner product

$$
\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Let $W=\operatorname{Span}\left(x^{3}+x, x^{2}-1, x\right)$.
(a) (5 points) Show that $\operatorname{dim} W=3$.
(b) (10 points) Find an orthogonal basis for W.
(c) (5 points) What is the dimension of W^{\perp} ? Briefly justify your answer.
5. Let V be an inner product space.
(a) (8 points) Let W_{1} and W_{2} be subspaces of V. Show that $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$
(b) (7 points) Let $T: V \rightarrow V$ be a linear transformation such that $\langle T(u), T(v)\rangle=\langle u, v\rangle$ for all $u, v \in V$. Show that T is one-to-one.
6. If V is a vector space over a field \mathbb{F}, let V^{*} denote $\mathcal{L}(V, \mathbb{F})$, so that V^{*} is the space of linear transformations from V to \mathbb{F}. Assume that $\operatorname{dim} V=n$ is finite.
(a) (4 points) Fix a vector $v \in V$. Consider the function $\phi_{v}: V^{*} \rightarrow \mathbb{F}$ defined by $\phi_{v}(f)=f(v)$. Show that ϕ_{v} is a linear transformation, i.e. $\phi_{v} \in\left(V^{*}\right)^{*}=\mathcal{L}\left(V^{*}, \mathbb{F}\right)$.
(b) (4 points) If $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, define $f_{i}: V \rightarrow \mathbb{F}$ for $1 \leq i \leq n$ by

$$
f_{i}\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a_{i}
$$

Show that $f_{i} \in V^{*}$.
(c) (4 points) Show that if v is not the zero vector, then there is an element $f \in V^{*}$ such that $\phi_{v}(f) \neq 0$. Part (b) may be useful!
(d) (8 points) Define $\Phi: V \rightarrow\left(V^{*}\right)^{*}$ by $\Phi(v)=\phi_{v}$. Show that Φ is a linear transformation and use (c) to conclude that Φ is an isomorphism. Hint: Compute $N(\Phi)$ and $\operatorname{dim}\left(V^{*}\right)^{*}$.

Scratch work (first page) - DO NOT REMOVE

Scratch work (second page) - DO NOT REMOVE

Scratch work (third page) - DO NOT REMOVE

Scratch work (fourth page) - DO NOT REMOVE

