Math 235: Final Exam

University of Rochester

December 12, 2021

Name:		
UR ID:		

- You are allowed one page, single-sided of notes. No other resources are permitted.
- The exam questions are on pages 2-16 of this packet.
- Each part of each question is on its own page. All work you want graded for that problem should be contained entirely on that page, unless:
- If you need more space on a problem, use the **Scratch work** pages at the end of the exam, and make sure to make a note on the problem page that you are doing so.
- Do not tear off the scratch work pages.
- Copy and sign the Honor Pledge: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: _____

Question:	1	2	3	4	5	6	Total
Points:	20	15	10	20	15	20	100

- 1. (20 points) Select either true or false, completely filling in the relevant bubble.
 - (a) The function $T: (\mathbb{F}_2)^2 \to (\mathbb{F}_2)^2$ given by $T(x,y) = (x+y, x^2+y^2)$ is a linear transformation.

(b) If $T: V \to V$ is a linear transformation such that $T^k = I$ for some integer $k \ge 2$, then T is invertible.

- (c) Let $W \subseteq V$ be a subspace such that dim W = 0. Then $\beta = \{0_V\}$ is a basis for W. \bigcirc True \bigcirc False
- (d) Any linear transformation $T: V \to W$ has a matrix representation in some space $M_n(\mathbb{F})$. \bigcirc True \bigcirc False

- (e) The set of solutions of a linear system Ax = b is always a subspace. \bigcirc True \bigcirc False
- (f) If the system $m \times n$ system Ax = b is consistent, then it has a unique solution. \bigcirc True \bigcirc False

 $[\]bigcirc$ True \bigcirc False

 $[\]bigcirc$ True \bigcirc False

- (g) The function det: $M_n(\mathbb{F}) \to \mathbb{F}$ is a linear transformation. \bigcirc True \bigcirc False
- (h) If $A \in M_n(\mathbb{R})$, then $\det(AA^T) \ge 0$. \bigcirc True \bigcirc False
- (i) If A and B are similar matrices in $M_n(\mathbb{F})$, then A and B have the same eigenvalues. \bigcirc True \bigcirc False
- (j) If u and v be eigenvectors of a matrix $A \in M_n(\mathbb{R})$ associated to distinct eigenvalues λ and μ , then u and v are orthogonal.
 - \bigcirc True \bigcirc False
- (k) Let $u, v, w \in V$ be vectors in an inner product space. If $u \perp v$ and $v \perp w$, then $u \perp w$. \bigcirc True \bigcirc False
 - 0 -----
- (1) Any orthogonal set of vectors is linearly independent.
 O True O False

2. Consider the following system of linear equations in \mathbb{R}^4 :

$$2x_1 - 2x_2 + x_3 - 3x_4 = b_1$$

-x_1 + x_2 + 2x_4 = b_2
$$x_3 + x_4 = b_3$$

(a) (7 points) Find a basis for the subspace of \mathbb{R}^4 consisting of the solutions to the system when $(b_1, b_2, b_3) = 0 \in \mathbb{R}^3$.

(b) (8 points) Find a basis for the subspace of \mathbb{R}^3 consisting of the set of vectors (b_1, b_2, b_3) such that the system is consistent.

3. Let
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix} \in M_3(\mathbb{R}).$$

(a) (5 points) Find the characteristic polynomial of A.

(b) (5 points) Show that $A^{-1} = \frac{1}{3}(2I - A^2)$. There is an easy way to do this and a hard way to do this.

4. Let $V = P_3(\mathbb{R})$ with inner product

$$\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx.$$

Let $W = \text{Span}(x^3 + x, x^2 - 1, x).$

(a) (5 points) Show that $\dim W = 3$.

(b) (10 points) Find an orthogonal basis for W.

(c) (5 points) What is the dimension of W^{\perp} ? Briefly justify your answer.

- 5. Let V be an inner product space.
 - (a) (8 points) Let W_1 and W_2 be subspaces of V. Show that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$

(b) (7 points) Let $T: V \to V$ be a linear transformation such that $\langle T(u), T(v) \rangle = \langle u, v \rangle$ for all $u, v \in V$. Show that T is one-to-one.

- 6. If V is a vector space over a field \mathbb{F} , let V^* denote $\mathcal{L}(V, \mathbb{F})$, so that V^* is the space of linear transformations from V to \mathbb{F} . Assume that dim V = n is finite.
 - (a) (4 points) Fix a vector $v \in V$. Consider the function $\phi_v \colon V^* \to \mathbb{F}$ defined by $\phi_v(f) = f(v)$. Show that ϕ_v is a linear transformation, i.e. $\phi_v \in (V^*)^* = \mathcal{L}(V^*, \mathbb{F})$.

(b) (4 points) If $\beta = \{v_1, \dots, v_n\}$ is a basis for V, define $f_i \colon V \to \mathbb{F}$ for $1 \leq i \leq n$ by

$$f_i(a_1v_1 + \dots + a_nv_n) = a_i.$$

Show that $f_i \in V^*$.

(c) (4 points) Show that if v is not the zero vector, then there is an element $f \in V^*$ such that $\phi_v(f) \neq 0$. Part (b) may be useful!

(d) (8 points) Define $\Phi: V \to (V^*)^*$ by $\Phi(v) = \phi_v$. Show that Φ is a linear transformation and use (c) to conclude that Φ is an isomorphism. **Hint:** Compute $N(\Phi)$ and $\dim(V^*)^*$.

Scratch work (first page) — DO NOT REMOVE

Scratch work (second page) — DO NOT REMOVE

Scratch work (third page) — DO NOT REMOVE

Scratch work (fourth page) — DO NOT REMOVE