# Math 235: Linear Algebra 

## Midterm Exam 2

November 20, 2014

NAME (please print legibly): $\qquad$
Your University ID Number: $\qquad$
Please circle your professor's name: Bobkova Friedmann

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your final answers, on those questions for which it is appropriate.

| QUESTION | VALUE | SCORE |
| ---: | ---: | ---: |
| 1 | 20 |  |
| 2 | 10 |  |
| 3 | 15 |  |
| 4 | 10 |  |
| 5 | 15 |  |
| 6 | 10 |  |
| 7 | 20 |  |
| TOTAL | 100 |  |

## 1. (20 points)

Suppose that $V$ is finite dimensional and let $S: V \rightarrow V$ and $T: V \rightarrow V$ be linear operators. Prove that $S T$ is invertible if and only if both $S$ and $T$ are invertible.
2. (10 points) In $\mathbb{R}^{2}$, let $\beta=\{(1,2),(3,4)\}$ and $\beta^{\prime}=\{(2,4),(4,6)\}$. Find the change of coordinate matrix that changes $\beta^{\prime}$ coordinates into $\beta$ coordinates.

## 3. (15 points)

(a) Find all solutions for the system

$$
\begin{array}{r}
x_{1}+2 x_{2}+5 x_{3}=1 \\
x_{1}-x_{2}-x_{3}=2
\end{array}
$$

(b) Write down a product of elementary matrices which transforms the matrix of coefficients from part a) to its reduced row echelon form.
(c) Find all solutions for the system

$$
\begin{array}{r}
x_{1}+2 x_{2}+5 x_{3}=0 \\
x_{1}-x_{2}-x_{3}=0
\end{array}
$$

4. ( $\mathbf{1 0}$ points) Suppose $A$ is a matrix and its row reduced echelon form is

$$
\left(\begin{array}{lllll}
1 & 2 & 0 & 3 & 8 \\
0 & 0 & 1 & 2 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Compute the dimension of $\operatorname{Null}\left(L_{A}\right)$.
(b) If the first column of $A$ is $\left(\begin{array}{l}1 \\ 1 \\ 5\end{array}\right)$ and the third column of $A$ is $\left(\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right)$, what is $A$ ? Show your work.
(c) Find a basis for the vector space spanned by the columns of the matrix $A$.
5. (15 points) How many solutions can a homogeneous system of linear equations have? Give an example of a system of two equations in two variables for each case. Explain your examples briefly. You do not have to find the solutions of the systems.
6. (10 points) Let

$$
A=\left(\begin{array}{ccc}
3 & -1 & 2 \\
2 & 1 & 1 \\
1 & -3 & 0
\end{array}\right)
$$

For which $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ does the system $A x=b$ have a solution?

## 7. (20 points)

(a) (5 points) Prove that if $B$ is a $2 \times 1$ matrix and $C$ is a $1 \times 2$ matrix then the $2 \times 2$ matrix $B C$ has rank at most one.
(b) (15 points) Show that if $A$ is any $2 \times 2$ matrix of rank 1 then there exist a $2 \times 1$ matrix $B$ and $1 \times 2$ matrix $C$ such that $A=B C$. (You will get $40 \%$ credit for providing an example.)

