Math 235: Linear Algebra

Midterm Exam 1

October 15, 2013

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Please circle your professor's name: Friedmann Tucker

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your final answers, on those questions for which it is appropriate.

QUESTION	VALUE	SCORE
1	10	
2	25	
3	20	
4	20	
5	15	
6	10	
TOTAL	100	

1. (10 points)

Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a subset of a vector space V. Suppose that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is dependent. Suppose that $v_{1} \neq 0$. Prove that we must have $v_{2} \in \operatorname{Span}\left(\left\{v_{1}\right\}\right)$ or $v_{3} \in \operatorname{Span}\left(\left\{v_{1}, v_{2}\right\}\right)$.

Solution. The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is dependent so there are scalars a, b, and c, not all zero, such that

$$
a v_{1}+b v_{2}+c v_{3}=0 .
$$

Method 1.

If $c \neq 0$ then $v_{3}=-\frac{1}{c}\left(a v_{1}+b v_{2}\right)$ so $v_{3} \in \operatorname{Span}\left(\left\{v_{1}, v_{2}\right\}\right)$.
If $c=0$ then $a v_{1}+b v_{2}=0$ with at least one of a and b nonzero. If $b \neq 0$ then $v_{2}=-\frac{a}{b} v_{1}$ so $v_{2} \in \operatorname{Span}\left(\left\{v_{1}\right\}\right)$ as required. If $b=0$ then $a \neq 0$ and $a v_{1}=0$, contradicting the assumption that $v_{1} \neq 0$. So $b \neq 0$.

Method 2.

Suppose $v_{2} \notin \operatorname{Span}\left(\left\{v_{1}\right\}\right)$. Then we show that $c \neq 0$: Suppose $c=0$, then $a v_{1}+b v_{2}=0$ so if $b \neq 0, v_{2}=-\frac{a}{b} v_{1}$, contradicting that $v_{2} \notin \operatorname{Span}\left(\left\{v_{1}\right\}\right)$. So $b=0$. But then $a v_{1}=0$ with $a \neq 0$, contradicting that $v_{1} \neq 0$.

So $c \neq 0$. Then $v_{3} \in \operatorname{Span}\left(\left\{v_{1}, v_{2}\right\}\right)$ because $v_{3}=-\frac{1}{c}\left(a v_{1}+b v_{2}\right)$.

2. (25 points)

(a) Let V be a vector space of dimension $n \geq 2$. Let W_{1} and W_{2} be subspaces of V such that $W_{1} \neq V, W_{2} \neq V$, and $W_{1} \neq W_{2}$. Show that $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq \operatorname{dim} V-2$.

Solution. Since $W_{1}, W_{2} \neq V$, we see that $\operatorname{dim} W_{1}<V$ and $\operatorname{dim} W_{2}<V$, as proved in class and in the book. Thus (since dimensions are integers), we have

$$
\begin{equation*}
\operatorname{dim} W_{1} \leq \operatorname{dim} V-1 \text { and } \operatorname{dim} W_{2} \leq \operatorname{dim} V-1 \tag{1}
\end{equation*}
$$

Since $W_{1} \neq W_{2}$, we see that either there is a vector in W_{1} that is not in W_{2} or a vector in W_{2} that is not in W_{1}. Thus, we have $W_{1} \cap W_{2} \neq W_{1}$ or $W_{1} \cap W_{2} \neq W_{2}$. This means that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)<\operatorname{dim} W_{1}$ or $\operatorname{dim}\left(W_{1} \cap W_{2}\right)<\operatorname{dim} W_{2}$. By (1), we then have $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq \operatorname{dim} V-2$, as desired.
(b) Let V the space of all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$, and let W be the set of all functions f such that $f(1)=-f(2)$. Show that W is a subspace of V.

Solution. We will check that 0 is in W, that W is closed under addition, and that W is closed under scalar multiplication.

The zero element of V is the function 0_{V} such that $0_{V}(x)=0$ for all $x \in \mathbb{R}$. Clearly $0_{V}(1)=0=-0=-0_{V}(2)$, so $0_{V} \in W$.

Now, suppose $f, g \in W$. Then

$$
(f+g)(1)=f(1)+g(1)=-f(2)-g(2)=-(f+g)(2)
$$

so $f+g \in W$. Thus, W is closed under addition.
Now, let $a \in \mathbb{R}$ and $f \in W$. Then

$$
(a f)(1)=a f(1)=a(-f(2))=-a f(2)=-(a f)(2) .
$$

Thus, W is closed under scalar multiplication.
We see then that W is a subspace of V.
(c) Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ be a linear transformation. Let W be the set of all $v \in \mathbb{R}^{2}$ such that $T(v)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Is W a subspace of \mathbb{R}^{2} ? Explain your answer carefully.

Solution. No, it is not. We do not have $0 \in W$ since $T(0)=0$, which is not $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
In fact, W is also not closed under scalar multiplication or addition either, as you may easily check.

3. (20 points)

Let $T: P_{1}(\mathbb{R}) \longrightarrow P_{1}(\mathbb{R})$ (here $P_{1}(\mathbb{R})$ is the set of polynomials of degree at most 1 with coefficients in \mathbb{R} as usual) be the linear map such that $T(x+1)=x$ and $T(x-1)=5 x$.
(a) Find $T(1)$.

Solution. Since

$$
1=\frac{(x+1)-(x-1)}{2}
$$

we have

$$
T(1)=T\left(\frac{(x+1)-(x-1)}{2}\right)=\frac{1}{2} T(x+1)-\frac{1}{2} T(x-1)=\frac{x}{2}-\frac{5 x}{2}=-2 x .
$$

(b) Is T one-one? Explain your answer.

Solution. No: $T(5(x+1)=5 T(x+1)=5 x=T(x-1)$ but $5(x+1) \neq(x-1)$.
(c) Calculate $\operatorname{dim} \mathrm{R}(T)$.

Solution.

The set $\{x+1, x-1\}$ forms a basis for $P_{1}(\mathbb{R})$. So

$$
\mathrm{R}(T)=\operatorname{Span}\{T(x+1), T(x-1)\}=\operatorname{Span}\{x, 5 x\}=\operatorname{Span}\{x\},
$$

hence $\operatorname{dim} \mathrm{R}(T)=1$.
(d) Let β be the ordered basis $\{1, x\}$ for $P_{1}(\mathbb{R})$. Write down the matrix $[T]_{\beta}^{\beta}$.

Solution. $T(1)=-2 x$ from (a).

$$
T(x)=T\left(\frac{(x+1)+(x-1)}{2}\right)=\frac{1}{2} T(x+1)+\frac{1}{2} T(x-1)=\frac{x}{2}+\frac{5 x}{2}=3 x
$$

So

$$
[T]_{\beta}^{\beta}=\left(\begin{array}{cc}
0 & 0 \\
-2 & 3
\end{array}\right)
$$

4. (20 points)

Let V be a vector space and let $T: V \longrightarrow V$ be a linear transformation.
(a) Suppose that $\left\{v_{1}, v_{2}\right\}$ are dependent. Show that $\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right\}$ must also be dependent.

Solution.

Since $\left\{v_{1}, v_{2}\right\}$ are dependent, there are a, b, not both zero, such that $a v_{1}+b v_{2}=0$. For any linear transformation, $T(0)=0$, hence $T\left(a v_{1}+b v_{2}\right)=0$. Since T is linear, $a T\left(v_{1}\right)+b T\left(v_{2}\right)=0$ with a, b not both zero, so $\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right\}$ is dependent.
(b) True or false and explain: Suppose that $\left\{v_{1}, v_{2}\right\}$ are independent. Then $\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right\}$ must also be independent.

Solution. False. Counterexample: Let T be the zero transformation. Then $T\left(v_{1}\right)=$ $T\left(v_{2}\right)=0$ for any v_{1} and v_{2}.
(c) Suppose now that $\operatorname{dim} V=3$. Show that we must have $\mathrm{N}(T) \neq \mathrm{R}(T)$.

Solution.

By the rank-nullity theorem, $\operatorname{dim} \mathrm{N}(T)+\operatorname{dim} \mathrm{R}(T)=3$. If $\mathrm{N}(T)=\mathrm{R}(T)$ then $\operatorname{dim} \mathrm{N}(T)=$ $\operatorname{dim} \mathrm{R}(T)=3 / 2$, which is impossible since dimension is an integer. So $\mathrm{N}(T) \neq \mathrm{R}(T)$.
(d) Suppose again that $\operatorname{dim} V=3$. True or false and explain: if $T \neq 0$, then $T^{2} \neq 0$.

Solution. False. Counterexample: Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis for V. Let $T\left(e_{1}\right)=$ $e_{2}, T\left(e_{2}\right)=0, T\left(e_{3}\right)=0$. So $T \neq 0$. But $T^{2}\left(e_{1}\right)=T\left(T\left(e_{1}\right)\right)=T\left(e_{2}\right)=0$, and more trivially, $T^{2}\left(e_{2}\right)=T^{2}\left(e_{3}\right)=0$. So $T^{2}=0$.
5. (15 points)
(a) Let $S=\left\{\binom{1}{3},\binom{0}{3}\right\}$. Is S linearly independent? Does S span \mathbb{R}^{2} ? Is S a basis for \mathbb{R}^{2} ? (Explain your answers.)

Solution. Neither of these vectors is a multiple of the other and there are two of them. Thus, they are linearly independent, span \mathbb{R}^{2}, and are a basis for \mathbb{R}^{2}.
(b) Let $S=\left\{\binom{1}{0},\binom{0}{1},\binom{5}{4}\right\}$. Is S linearly independent? Does S span \mathbb{R}^{2} ? Is S a basis for \mathbb{R}^{2} ? (Explain your answers.)

Solution. There are three vectors here and the dimension of \mathbb{R}^{2} is 2 , so they are clearly not linearly independent. Since no vector is a multiple of another vector, the dimension of the span is 2 , so they do span all of \mathbb{R}^{2}. They are not a basis, since they are not linearly independent.
(c) Let $S=\left\{\binom{1}{0}\right\}$. Is S linearly independent? Does S span \mathbb{R}^{2} ? Is S a basis for \mathbb{R}^{2} ? (Explain your answers.)

Solution. The set S consists of a single nonzero vector, so it is clearly linearly independent. It cannot span \mathbb{R}^{2} since \mathbb{R}^{2} has dimension 2. It is not a basis for \mathbb{R}^{2} since it does not span \mathbb{R}^{2}.
6. (10 points) Suppose that $\{u, v\}$ is a basis for a vector space V. Show that $\{u+v, u+2 v\}$ is also a basis for V.

Solution. Since V has dimension 2, any set of two elements that is linearly independent will be a basis for V, as we've proved in class and in the book. Thus, it will suffice to show that $\{u+v, u+2 v\}$ is linearly independent. (Note: It would also suffice to show that $\{u+v, u+2 v\}$ spans V since any set of two vectors that spans V will be a basis.)

Suppose that we have $a(u+v)+b(u+2 v)=0$ for scalars a and b. Then $(a+b) u+(a+2 b) v=0$. Since $\{u, v\}$ is linearly independent, this means

$$
\begin{align*}
& a+b=0 \\
& a+2 b=0 \tag{2}
\end{align*}
$$

Subtracting the first equation from the second we obtain $b=0$. Substituting then gives $a=0$.

Thus, we see that the only scalars a, b such that $a(u+v)+b(u+2 v)=0$ are $a=b=0$. Therefore, $\{u+v, u+2 v\}$ is linearly independent and our proof is done.

