MATH 233: ASSIGNMENT 6

DUE: **FRIDAY, MARCH 29**, 11:59PM ON GRADESCOPE UNIVERSITY OF ROCHESTER, SPRING 2024

Problem 1 (6.6.18). Consider the following simplified version of the Cipher FeedBack (CFB) mode. The plaintext is broken into 32-bit pieces: $P = [P_1, P_2, ...]$, where each P_j has 32 bits, rather than the eight bits used in CFB. Encryption proceeds as follows. An initial 64-bit X_1 is chosen. Then for j = 1, 2, 3, ..., the following is performed:

$$C_j = P_j \oplus L_{32}(E_K(X_j)), \quad X_{j+1} = R_{32}(X_j) \parallel C_j,$$

where $L_{32}(X)$ denotes the leftmost 32 bits of X, $R_{32}(X)$ denotes the rightmost 32 bits of X, and X || Y denotes the string obtained by writing X followed by Y.

Then the ciphertext consists of 32-bit blocks $C_1, C_2, C_3, C_4, \ldots$ Suppose that a transmission error causes C_1 to be received as $\tilde{C}_1 \neq C_1$, but that C_2, C_3, C_4, \ldots are received correctly. This corrupted ciphertext is then decrypted to yield plaintext blocks $\tilde{P}_1, \tilde{P}_2, \ldots$ Explain the decryption process, and show that $\tilde{P}_1 \neq P_1$, but that $\tilde{P}_i = P_i$ for all $i \geq 4$. This implies that one error only affects at most three blocks of the decryption. (*Hint*. The decryption is $P_j = C_j \oplus L_{32}(E_K(X_j))$.)

Problem 2. (a) Let

 $f(x) = x^5 + x^3 + 1$ and $g(x) = x^3 + x + 1$

be two polynomials in $\mathbb{Z}_2[x]$. Find gcd(f(x), g(x)) and two polynomials h(x), k(x) in $\mathbb{Z}_2[x]$ satisfying

$$h(x)f(x) + k(x)g(x) = \gcd(f(x), g(x))$$

in $\mathbb{Z}_2[x]$. Use the result to find the multiplicative inverse of g(x) in

$$GF(2^5) = \{p(x) \in \mathbb{Z}_2[x] : \deg p < 5\}$$

defined by f(x).

(b) Consider f(x) and g(x) in part (a) as polynomials in $\mathbb{Z}_3[x]$ and answer the same questions. That is, find gcd(f(x), g(x)) and two polynomials h(x), k(x) in $\mathbb{Z}_3[x]$ satisfying

$$h(x)f(x) + k(x)g(x) = \gcd(f(x), g(x))$$

in $\mathbb{Z}_3[x]$. Use the result to show that f(x) does not define a finite field with 3^5 elements.

- **Problem 3** (3.13.47, modified). (a) Using the fact that the only irreducible polynomials in $\mathbb{Z}_2[x]$ of degree 1 or 2 are x, x + 1, and $x^2 + x + 1$, show that $x^4 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. (*Hint.* Use part (a). If it factors, it must have at least one factor of degree at most 2.)
- (b) Show that $x^4 \equiv x + 1$, $x^8 \equiv x^2 + 1$, and $x^{16} \equiv x \pmod{x^4 + x + 1}$ in $\mathbb{Z}_2[x]$.
- (c) Show that $x^{15} \equiv 1 \pmod{x^4 + x + 1}$ from Part (c). (*Hint.* We can divide each side of $x^{16} \equiv x$ by x. Why are we able to do so?)

Problem 4. Consider the simplified DES encryption method described in the lecture (see Slide 12).

- (a) Use the expander function and S-Boxes given on Slide 13 and the keys given on Slide 14, verify the second and third rounds of encryption given on Slide 15.
- (b) Verify the first round of the decryption on the slide 16. That is, execute the Feistel system beginning with $L_3 = 100001$, $R_3 = 011101$, and K_3 , and verify that it yields outputs (R_2, L_2) .

Problem 5 (7.7.2). Bud gets a budget 2-round Feistel system. (Two rounds are identical, unlike the DES where the last round is slightly different from the previous rounds.) It uses a 32-bit L, a 32-bit R, and a 32-bit key K. The function is $f(R, K) = R \oplus K$, with the same key for each round. Moreover, to avoid transmission errors, he always uses a 32-bit message M and lets $L_0 = R_0 = M$. Eve does not know Bud's key, but she obtains the ciphertext for one of Bud's encryptions. Describe how Eve can obtain the plaintext M and the key K.

- **Problem 6** (7.7.5). (a) Let K = 111...111 be the 56-bit DES key (after discarding parity bits) consisting of all 1's. Show that if $E_K(P) = C$, then $E_K(C) = P$ where E_K is the encryption function using the key K, so encrypting twice with this key returns the plaintext. (*Hint*. The round keys are sampled from K. Decryption uses these keys in reverse order.)
- (b) Find another key with the same property as K in part (a). (*Note.* Such key is called a **weak key**.)