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Problem 1 (9.8.5, modified). The ciphertext 6856 was obtained using RSA with n = 11111
and e = 257. Show that m = 10 cannot be the corresponding plaintext, without factoring n.
(Hint. 11111 · 9 = 99999. You will not need a calculator.)

Solution. Since 105 = 100000 ≡ 1 (mod 11111) and 257 = 5 · 51 + 2,
10257 ≡ (100000)51102 ≡ 151 · 100 ≡ 100 (mod 11111).

Therefore, 10 cannot be the plaintext. □

Problem 2 (9.8.13). Naive Nelson uses RSA to receive a single ciphertext c, corresponding
to the message m. His public modulus is n and his public encryption exponent is e. Since
he feels guilty that his system was used only once, he agrees to decrypt any ciphertext that
someone sends him, as long as it is not c, and return the answer to that person. Evil Eve
sends him the ciphertext 2ec (mod n). Show how this allows Eve to find m.

Solution. Suppose that Nelson sends m′ back to Eve. If d is the decryption exponent, we
have

m′ ≡ (2ec)d ≡ 2decd ≡ 2dem (mod n).
Since 2de ≡ 2 (mod n) by Euler’s Theorem, we have

m′ ≡ 2m (mod n).
Now Eve can find m as

m ≡ 2−1m′ (mod n),
using the multiplicative inverse 2−1 of 2 mod n which can be obtained easily. □

Problem 3 (9.8.31, modified). Suppose two users Alice and Bob have the same RSA modulus
n and suppose that their encryption exponents eA and eB are relatively prime. Charles wants
to send the message m to Alice and Bob, so he encrypts to get cA ≡ meA and cB ≡ meB

(mod n). Suppose that gcd(m, n) = 1. Show how Eve can find m if she intercepts cA and cB.
(Hint. Use Bezout’s identity.)

Solution. Since eA and eB are relatively prime, one can find two integers fA and fB such that
eAfA + eBfB = 1.

Then
cfA

A cfB
B ≡ (meA)fA(meB )fB ≡ meAfA+eBfB ≡ m (mod n),

and Eve is able to calculate this from intercepted ciphertexts and public information eA, eB. □



Problem 4 (9.8.26). Suppose you want to factor an integer n. You have found some integers
x1, x2, x3, x4 such that

x2
1 ≡ 2 · 3 · 7, x2

2 ≡ 3 · 5 · 7, x2
3 ≡ 39, x2

4 ≡ 2 · 7 (mod n).
Describe how you might be able to use this information to factor n. (Indicate explicitly what
might be a factor of n.) Why might the method fail?

Solution. We have
(x1x3x4)2 ≡ 22 · 310 · 72 ≡ (2 · 35 · 7)2 (mod n).

Therefore, If x1x3x4 ̸≡ 2 · 35 · 7 (mod n), then gcd(x1x3x4 − 2 · 35 · 7, n) is a factor of n.
However, if x1x3x4 ≡ 2 · 35 · 7 or x1x3x4 ≡ −2 · 35 · 7 (mod n), then the method fails. □

Problem 5. Let n(= pq), d, e be the RSA modulus, the decryption exponent, and the
encryption exponent, respectively, of the RSA cryptosystem. Show that⌈

de − 1
n

⌉
= de − 1

ϕ(n)
if

e ≤ n

p + q − 1 .

(Hint. Observe that (de − 1)/ϕ(n) is an integer by definition, and (de − 1)/n is always smaller
than (de − 1)/ϕ(n). Therefore, the given equality holds if and only if

de − 1
n

>
de − 1
ϕ(n) − 1.

Show that the given inequality on e implies the above inequality. You may have to use the
fact that d < ϕ(n).)

Solution. Observe that
p + q − 1 = n − ϕ(n).

Therefore, if
e ≤ n

p + q − 1 = n

n − ϕ(n) ,

then
de − 1 <

nϕ(n)
n − ϕ(n) = 1

1
ϕ(n) − 1

n

⇒ de − 1
ϕ(n) − de − 1

n
< 1

(here we used d < ϕ(n)). This implies the inequality given in the hint. □



Problem 6 (10.6.7, modified). Let p = 101, which is a prime number. We know that 2 is a
primitive root mod p. It can also be shown that L2(3) = 69.

(a) Evaluate L2(72) using the fact that 72 = 23 · 32.

(b) Evaluate L2(11) using the fact that 1167 ≡ 22 · 3 (mod 101).

Solution. (a)
L2(72) ≡ 3L2(2) + 2L2(3) ≡ 3 · 1 + 2 · 69 ≡ 141 (mod 100) ⇒ L2(72) = 41.

(b)
67L2(11) ≡ 2L2(2) + L2(3) ≡ 2 · 1 + 69 ≡ 71 (mod 100)

⇒ L2(11) ≡ 67−1 · 71 ≡ 3 · 71 ≡ 213 (mod 100)
⇒ L2(11) = 13.

□

Problem 7. Alice and Bob agree to use the prime p = 29 and a primitive root α = 2 for a
Diffie-Hellman key exchange. Alice sends Bob the value αa ≡ 11 (mod p). Bob asks your
assistance, so you tell him to use the secret exponent b = 9. What value should Bob send to
Alice, and what is their secret shared value? Can you figure out Alice’s secret exponent a
without solving a discrete logarithm problem? (Hint. 25 ≡ 3 (mod 29), 113 ≡ −3 (mod 29).)

Solution. Bob should send
29 ≡ 25 · 24 ≡ 3 · 16 ≡ 19 (mod p)

to Alice. There shared value is
αab ≡ 119 ≡ (113)3 ≡ (−3)3 ≡ −27 ≡ 2 (mod p).

Since the shared value is equal to α itself, we know that
ab ≡ 1 (mod p − 1),

i.e., a is the multiplicative inverse of b = 9 mod p − 1(= 28), which is 25. □

Problem 8 (10.6.16). In the ElGamal cryptosystem, Alice and Bob use p = 17 and α = 3.
Bob chooses his secret to be b = 6, so β = 15. Alice sends the ciphertext (r, t) = (7, 6).
Determine the plaintext m.

Solution. Note that the multiplicative inverse of r = 7 mod p = 17 is r−1 ≡ 5 (mod 17).
Then

m ≡ tr−b ≡ 6 · 7−6 ≡ 6 · 56 ≡ 12 (mod p).
Therefore, the plaintext is m = 12. □



Problem 9 (10.6.4). Let p = 19. Then 2 is a primitive root. Use the Pohlig-Hellman method
to compute L2(14). (For this problem, you may use any method – calculator, Wolframalpha,
etc. – to evaluate modular exponentiation. However, you should not use any method other
than the Pohlig-Hellman method (e.g. brute-force attack), and you should explicitly indicate
every modular exponentiation you used.)

Solution. Let x = L2(14). Since p − 1 = 18 = 2 · 32, we need to determine x (mod 2) and x
(mod 32). First, we make a list with γk ≡ 2k(p−1)/2 (mod p):

k 0 1
γk 1 −1

Then since
14(p−1)/2 ≡ 149 ≡ −1 (mod p),

we can conclude that x ≡ 1 (mod 2).

For mod 32, we make a similar list with γk ≡ 2k(p−1)/3 (mod p):
k 0 1 2
γk 1 7 11

Now let x ≡ 3x1 + x0 (mod 32). From
14(p−1)/3 ≡ 146 ≡ 7 (mod p),

we have x0 = 1. Then
14 · 2−1 ≡ 7 (mod p),

and
7(p−1)/32 ≡ 72 ≡ 11 (mod p).

This implies x1 = 2, therefore
x ≡ 3 · 2 + 1 ≡ 7 (mod 32).

Now using the Chinese Remainder Theorem, we can conclude that
x ≡ 7 (mod p − 1) ⇒ L2(14) = 7.

□


