MATH 233: ASSIGNMENT 4

DUE: FRIDAY, FEBRUARY 23, 11:59PM ON GRADESCOPE
UNIVERSITY OF ROCHESTER, SPRING 2024

Problem 1. (a) (5.4.2) The LFSR sequence $10011101 \ldots$ is generated by a recurrence relation of length 3: $x_{n+3} \equiv c_{0} x_{n}+c_{1} x_{n+1}+c_{2} x_{n+2}(\bmod 2)$. Find the coefficients c_{0}, c_{1}, c_{2}.
(b) (5.4.8) Suppose we build an LFSR-type machine that works mod 2. It uses a recurrence of length 2 of the form $x_{n+2} \equiv c_{0} x_{n}+c_{1} x_{n+1}+1(\bmod 2)$ to generate the sequence $11001100 \ldots$. Find c_{0} and c_{1}.

Solution. (a) We construct a matrix (modular) equation as

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right) \equiv\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad(\bmod 2)
$$

The matrix is invertible with inverse

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

$\bmod 2$, so

$$
\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right) \equiv\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \equiv\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \Rightarrow\left(c_{0}, c_{1}, c_{2}\right) \equiv(1,0,1) \quad(\bmod 2)
$$

The recurrence relation $x_{n+3} \equiv x_{n}+x_{n+2}(\bmod 2)$ generates the given sequence well.
(b) We first construct a system of linear (modular) equations (mod 2$)$ as

$$
\begin{aligned}
c_{0}+c_{1}+1 & \equiv 0, \\
c_{0} \quad+1 & \equiv 0 .
\end{aligned}
$$

Now we represent this with a matrix equation:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{c_{0}}{c_{1}}+\binom{1}{1} \equiv\binom{0}{0} \quad(\bmod 2) \quad \Rightarrow \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{c_{0}}{c_{1}} \equiv\binom{1}{1} \quad(\bmod 2) .
$$

The matrix is invertible with inverse

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

$\bmod 2$, so

$$
\binom{c_{0}}{c_{1}} \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{1}{1} \equiv\binom{1}{0} \quad \Rightarrow \quad\left(c_{0}, c_{1}\right) \equiv(1,0) \quad(\bmod 2)
$$

The recurrence relation $x_{n+2} \equiv x_{n}+1(\bmod 2)$ generates the given sequence well.

Problem 2. (a) (3.13.16) Find x with $x \equiv 3(\bmod 5)$ and $x \equiv 9(\bmod 11)$.
(b) (3.13.17) Find x with $2 x \equiv 1(\bmod 7)$ and $4 x \equiv 2(\bmod 9)$. (Hint: Replace $2 x \equiv 1$ $(\bmod 7)$ with $x \equiv a(\bmod 7)$ for a suitable a, and similarly for the second congruence.)

Solution. (a) $5 \cdot(-2)+11 \cdot 1=1$, so

$$
x \equiv 9 \cdot 5 \cdot(-2)+3 \cdot 11 \cdot 1 \equiv-57 \equiv 53 \quad(\bmod 55)
$$

(b) We have

$$
2^{-1} \equiv 4 \quad(\bmod 7) \quad \Rightarrow \quad x \equiv 4 \quad(\bmod 7)
$$

and

$$
4^{-1} \equiv 7 \quad(\bmod 9) \quad \Rightarrow \quad x \equiv 2 \cdot 7 \equiv 5 \quad(\bmod 9)
$$

Then $7 \cdot 4+9 \cdot(-3)=1$, so

$$
x \equiv 5 \cdot 7 \cdot 4+4 \cdot 9 \cdot(-3) \equiv 32 \quad(\bmod 63) .
$$

Problem 3 (3.13.21). (a) Find all four solutions to $x^{2} \equiv 133(\bmod 143)$. (Note that $143=$ $11 \cdot 13$.
(b) Find all solutions to $x^{2} \equiv 77(\bmod 143)$. (There are only two solutions in this case. This is because $\operatorname{gcd}(77,143) \neq 1$. You may need to use 3.13.14(a).)

Solution. (a) We have

$$
x^{2} \equiv 133 \equiv 1 \quad(\bmod 11) \quad \Rightarrow \quad x \equiv \pm 1 \quad(\bmod 11)
$$

On the other hand,

$$
x^{2} \equiv 133 \equiv 3 \quad(\bmod 13) \quad \Rightarrow \quad x \equiv \pm 4 \quad(\bmod 13)
$$

obtained by an exhaustive search. (Since $13 \not \equiv 3(\bmod 4)$, you cannot use the method introduced in the lecture.) Applying CRT to each of four pairs using $11 \cdot 6+13 \cdot(-5)=1$, we have

$$
\begin{aligned}
& x \equiv 1 \quad(\bmod 11), \quad x \equiv 4 \quad(\bmod 13) \quad \Rightarrow \quad x \equiv 4 \cdot 11 \cdot 6+1 \cdot 13 \cdot(-5) \\
& \equiv 199 \equiv 56 \quad(\bmod 143) \text {, } \\
& x \equiv 1 \quad(\bmod 11), \quad x \equiv-4 \quad(\bmod 13) \quad \Rightarrow \quad x \equiv(-4) \cdot 11 \cdot 6+1 \cdot 13 \cdot(-5) \\
& \equiv-329 \equiv 100 \quad(\bmod 143) \text {, } \\
& x \equiv-1 \quad(\bmod 11), \quad x \equiv 4 \quad(\bmod 13) \quad \Rightarrow \quad x \equiv(4) \cdot 11 \cdot 6+(-1) \cdot 13 \cdot(-5) \\
& \equiv 329 \equiv 43 \quad(\bmod 143) \text {, } \\
& x \equiv-1 \quad(\bmod 11), \quad x \equiv-4 \quad(\bmod 13) \quad \Rightarrow \quad x \equiv(-4) \cdot 11 \cdot 6+(-1) \cdot 13 \cdot(-5) \\
& \equiv-199 \equiv 87 \quad(\bmod 143) .
\end{aligned}
$$

(b) We have

$$
x^{2} \equiv 77 \equiv 0 \quad(\bmod 11) \quad \Rightarrow \quad x \equiv 0 \quad(\bmod 11)
$$

from 3.13.14(a). On the other hand,

$$
x^{2} \equiv 77 \equiv 12 \quad(\bmod 13) \quad \Rightarrow \quad x \equiv \pm 5 \quad(\bmod 13)
$$

obtained by an exhaustive search. Applying CRT to each pair, we have

$$
\begin{aligned}
x \equiv 0 \quad(\bmod 11), \quad x \equiv 5 \quad(\bmod 13) \quad \Rightarrow \quad x & \equiv 5 \cdot 11 \cdot 6+0 \cdot 13 \cdot(-5) \\
& \equiv 330 \equiv 44 \quad(\bmod 143) \\
x \equiv 0 \quad(\bmod 11), \quad x \equiv-5 \quad(\bmod 13) \Rightarrow \quad x & \equiv(-5) \cdot 11 \cdot 6+0 \cdot 13 \cdot(-5) \\
& \equiv-330 \equiv 99 \quad(\bmod 143) .
\end{aligned}
$$

Problem 4 (3.13.42). (a) Use the Legendre symbol to show that $x^{2} \equiv 5(\bmod 19)$ has a solution.
(b) Find all solutions to $x^{2} \equiv 5(\bmod 19)$. (There are two solutions. Do NOT use the brute-force search.)

Solution. (a) Note that the Legendre symbol also satisfies the law of quadratic reciprocity. Therefore,

$$
\begin{aligned}
\left(\frac{5}{19}\right) & =\left(\frac{19}{5}\right) \quad(5 \equiv 1 \quad(\bmod 4)) \\
& =\left(\frac{4}{5}\right) \\
& =1
\end{aligned}
$$

since $x^{2} \equiv 4(\bmod 5)$ has solutions $x \equiv \pm 2(\bmod 5)$. Therefore, $x^{2} \equiv 5(\bmod 19)$ also has a solution.
(b) Since $19 \equiv 3(\bmod 4)$, we consider

$$
5^{(19+1) / 4} \equiv 5^{5} \equiv 9 \quad(\bmod 19)
$$

Since

$$
9^{2} \equiv 81 \equiv 5 \quad(\bmod 19)
$$

we can conclude that the solutions to $x^{2} \equiv 5(\bmod 19)$ are

$$
x \equiv \pm 9 \quad(\bmod 19)
$$

Problem 5. (a) (3.13.25) Find the last 2 digits of 123^{562}. (Hint: Use mod 100.)
(b) Find the last 7 digits of the binary representation of 123^{643}. (Hint: $2^{6}=64$ and $2^{7}=128$.)

Solution. (a) Since $100=2^{2} \cdot 5^{2}$,

$$
\phi(100)=100\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=40 \quad \Rightarrow \quad 123^{40} \equiv 1 \quad(\bmod 100)
$$

by Euler's theorem. (Note that $\operatorname{gcd}(100,123)=1$.) Therefore, since $562 \equiv 2(\bmod 40)$, we have

$$
123^{562} \equiv 123^{2} \equiv 23^{2} \equiv 29 \quad(\bmod 100)
$$

so the last 2 digits of 123^{562} are 29 .
(b) We need to use $\bmod 2^{7}=128$. Since $\operatorname{gcd}(128,123)=1$ and

$$
\phi(128)=128\left(1-\frac{1}{2}\right)=64 \quad \Rightarrow \quad 123^{64} \equiv 1 \quad(\bmod 128)
$$

by Euler's theorem, we have

$$
123^{643} \equiv 123^{3} \equiv(-5)^{3} \equiv-125 \equiv 3 \quad(\bmod 128)
$$

This implies that the last 7 digits of the binary representation of 123^{643} are 0000011 .

Problem 6 (3.13.53). Let a and $n>1$ be integers with $\operatorname{gcd}(a, n)=1$. The order of $a \bmod$ n is the smallest positive integer r such that $a^{r} \equiv 1(\bmod n)$. We denote $r=\operatorname{ord}_{n}(a)$.
(a) Show that $r \leq \phi(n)$.
(b) Show that if $m=r k$ is a multiple of r, then $a^{m} \equiv 1(\bmod n)$.
(c) Suppose $a^{t} \equiv 1(\bmod n)$. Write $t=q r+s$ with $0 \leq s<r$ (this is just division with remainder). Show that $a^{s} \equiv 1(\bmod n)$. Then using the definition of r and the fact that $0 \leq s<r$, show that $s=0$ and therefore $r \mid t$, i.e., r divides t. (This, combined with part (b), yields the result that $a^{t} \equiv 1(\bmod n)$ if and only if $\operatorname{ord}_{n}(a) \mid t$.)
(d) Show that $\operatorname{ord}_{n}(a) \mid \phi(n)$.

Solution. (a) $a^{\phi(n)} \equiv 1(\bmod n)$ by Euler's theorem. Therefore, $r \leq \phi(n)$ from the definition of r.
(b) We have

$$
a^{m} \equiv a^{r k} \equiv\left(a^{r}\right)^{k} \equiv 1 \quad(\bmod n)
$$

(c) We have

$$
1 \equiv a^{t} \equiv a^{q r+s} \equiv a^{q r} a^{s} \equiv\left(a^{r}\right)^{q} a^{s} \equiv a^{s} \quad(\bmod n)
$$

$s>0$ contradicts the definition of r, so $s=0$ and $r \mid t$.
(d) Since $a^{\phi(n)} \equiv 1(\bmod n), r=\operatorname{ord}_{n}(a)$ should divide $\phi(n)$ by part (c).

