MATH 233: ASSIGNMENT 4

DUE: FRIDAY, FEBRUARY 23, 11:59PM ON GRADESCOPE
UNIVERSITY OF ROCHESTER, SPRING 2024

Problem 1. (a) (5.4.2) The LFSR sequence 10011101 . . is generated by a recurrence relation of length 3: $x_{n+3} \equiv c_{0} x_{n}+c_{1} x_{n+1}+c_{2} x_{n+2}(\bmod 2)$. Find the coefficients c_{0}, c_{1}, c_{2}.
(b) (5.4.8) Suppose we build an LFSR-type machine that works mod 2. It uses a recurrence of length 2 of the form $x_{n+2} \equiv c_{0} x_{n}+c_{1} x_{n+1}+1(\bmod 2)$ to generate the sequence $11001100 \ldots$. Find c_{0} and c_{1}.

Problem 2. (a) (3.13.16) Find x with $x \equiv 3(\bmod 5)$ and $x \equiv 9(\bmod 11)$.
(b) (3.13.17) Find x with $2 x \equiv 1(\bmod 7)$ and $4 x \equiv 2(\bmod 9)$. (Hint: Replace $2 x \equiv 1$ $(\bmod 7)$ with $x \equiv a(\bmod 7)$ for a suitable a, and similarly for the second congruence.)

Problem 3 (3.13.21). (a) Find all four solutions to $x^{2} \equiv 133(\bmod 143) .($ Note that $143=$ $11 \cdot 13$.)
(b) Find all solutions to $x^{2} \equiv 77(\bmod 143)$. (There are only two solutions in this case. This is because $\operatorname{gcd}(77,143) \neq 1$. You may need to use 3.13.14(a).)

Problem 4 (3.13.42). (a) Use the Legendre symbol to show that $x^{2} \equiv 5(\bmod 19)$ has a solution.
(b) Find all solutions to $x^{2} \equiv 5(\bmod 19)$. (There are two solutions. Do NOT use the brute-force search.)

Problem 5. (a) (3.13.25) Find the last 2 digits of 123^{562}. (Hint: Use mod 100.)
(b) Find the last 7 digits of the binary representation of 123^{643}. (Hint: $2^{6}=64$ and $2^{7}=128$.)

Problem 6 (3.13.53). Let a and $n>1$ be integers with $\operatorname{gcd}(a, n)=1$. The order of $a \bmod$ n is the smallest positive integer r such that $a^{r} \equiv 1(\bmod n)$. We denote $r=\operatorname{ord}_{n}(a)$.
(a) Show that $r \leq \phi(n)$.
(b) Show that if $m=r k$ is a multiple of r, then $a^{m} \equiv 1(\bmod n)$.
(c) Suppose $a^{t} \equiv 1(\bmod n)$. Write $t=q r+s$ with $0 \leq s<r$ (this is just division with remainder). Show that $a^{s} \equiv 1(\bmod n)$. Then using the definition of r and the fact that $0 \leq s<r$, show that $s=0$ and therefore $r \mid t$, i.e., r divides t. (This, combined with part (b), yields the result that $a^{t} \equiv 1(\bmod n)$ if and only if $\operatorname{ord}_{n}(a) \mid t$.)
(d) Show that $\operatorname{ord}_{n}(a) \mid \phi(n)$.

