MATH 233: ASSIGNMENT 4

DUE: FRIDAY, FEBRUARY 23, 11:59PM ON GRADESCOPE UNIVERSITY OF ROCHESTER, SPRING 2024

- **Problem 1.** (a) (5.4.2) The LFSR sequence 10011101... is generated by a recurrence relation of length 3: $x_{n+3} \equiv c_0 x_n + c_1 x_{n+1} + c_2 x_{n+2} \pmod{2}$. Find the coefficients c_0, c_1, c_2 .
- (b) (5.4.8) Suppose we build an LFSR-type machine that works mod 2. It uses a recurrence of length 2 of the form $x_{n+2} \equiv c_0 x_n + c_1 x_{n+1} + 1 \pmod{2}$ to generate the sequence 11001100.... Find c_0 and c_1 .
- **Problem 2.** (a) (3.13.16) Find x with $x \equiv 3 \pmod{5}$ and $x \equiv 9 \pmod{11}$.
- (b) (3.13.17) Find x with $2x \equiv 1 \pmod{7}$ and $4x \equiv 2 \pmod{9}$. (*Hint*: Replace $2x \equiv 1 \pmod{7}$ with $x \equiv a \pmod{7}$ for a suitable a, and similarly for the second congruence.)
- **Problem 3** (3.13.21). (a) Find all four solutions to $x^2 \equiv 133 \pmod{143}$. (Note that $143 = 11 \cdot 13$.)
- (b) Find all solutions to $x^2 \equiv 77 \pmod{143}$. (There are only two solutions in this case. This is because $gcd(77, 143) \neq 1$. You may need to use 3.13.14(a).)
- **Problem 4** (3.13.42). (a) Use the Legendre symbol to show that $x^2 \equiv 5 \pmod{19}$ has a solution.
- (b) Find all solutions to $x^2 \equiv 5 \pmod{19}$. (There are two solutions. Do NOT use the brute-force search.)

Problem 5. (a) (3.13.25) Find the last 2 digits of 123^{562} . (*Hint*: Use mod 100.)

(b) Find the last 7 digits of the binary representation of 123^{643} . (*Hint*: $2^6 = 64$ and $2^7 = 128$.)

Problem 6 (3.13.53). Let a and n > 1 be integers with gcd(a, n) = 1. The order of a mod n is the smallest positive integer r such that $a^r \equiv 1 \pmod{n}$. We denote $r = ord_n(a)$.

- (a) Show that $r \leq \phi(n)$.
- (b) Show that if m = rk is a multiple of r, then $a^m \equiv 1 \pmod{n}$.
- (c) Suppose $a^t \equiv 1 \pmod{n}$. Write t = qr + s with $0 \leq s < r$ (this is just division with remainder). Show that $a^s \equiv 1 \pmod{n}$. Then using the definition of r and the fact that $0 \leq s < r$, show that s = 0 and therefore $r \mid t$, i.e., r divides t. (This, combined with part (b), yields the result that $a^t \equiv 1 \pmod{n}$ if and only if $\operatorname{ord}_n(a) \mid t$.)
- (d) Show that $\operatorname{ord}_n(a) \mid \phi(n)$.