MATH 233: ASSIGNMENT 1

DUE: FRIDAY, FEBRUARY 2, 11:59PM ON GRADESCOPE

 UNIVERSITY OF ROCHESTER, SPRING 2024Problem 1. Let a and b be positive integers and k be an integer. Prove that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a+k b, b)
$$

using the definition of the greatest common divisors, and use this to show that the last remainder in the Euclidean algorithm is indeed the greatest common divisor of a and b.

Solution. Let $d=\operatorname{gcd}(a, b)$. Since d divides both a and b, it follows that d divides $a+k b$ as well. If there exists a positive integer d^{\prime} greater than d dividing both $a+k b$ and b, then d^{\prime} should also divide $a=(a+k b)-k b$, which contradicts the fact that d is the greatest positive integer dividing both a and b. Therefore, there is no such d^{\prime}, which implies $\operatorname{gcd}(a+k b, b)=d$. Now consider the following Euclidean algorithm.

$$
\begin{array}{cc}
a=q_{1} b+r_{1} & b \\
b=q_{2} r_{1}+r_{2} & r_{1} \\
\vdots & \vdots \\
r_{k-2}=q_{k} r_{k-1}+r_{k} & r_{k-1} \\
r_{k-1}=q_{k+1} r_{k} & r_{k}
\end{array}
$$

From the first statement we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(q_{1} b+r_{1}, b\right)=\operatorname{gcd}\left(r_{1}, b\right)=\operatorname{gcd}\left(b, r_{1}\right) .
$$

Similarly,

$$
\operatorname{gcd}\left(b, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{k-2}, r_{k-1}\right)=\operatorname{gcd}\left(r_{k-1}, r_{k}\right) .
$$

Since r_{k} divides r_{k-1}, we have

$$
\operatorname{gcd}\left(r_{k-1}, r_{k}\right)=r_{k}
$$

Therefore,

$$
\operatorname{gcd}(a, b)=r_{k}
$$

Problem 2. (3.13.1) Show your work. Do not use a calculator.
(a) Find integers x and y such that $17 x+101 y=1$.
(b) Find 17^{-1} (the multiplicative inverse of 17) $\bmod 101$.

Solution. (a) We first execute the Euclidean algorithm:

$$
\begin{array}{ccc}
101 & =5 \cdot 17+16 & \\
17 & =1 \cdot 16+1 \\
16 & =16 \cdot 1 & \\
16
\end{array}
$$

Now we have

$$
\begin{aligned}
1 & =17-1 \cdot 16 \\
& =17-(101-5 \cdot 17) \\
& =6 \cdot 17-101
\end{aligned}
$$

Therefore, $(x, y)=(6,-1)$ satisfies the given equation. (Note that there are infinitely many pairs satisfying the given equation.)
(b) From part (a), we know that

$$
17 \cdot 6 \equiv 1 \quad(\bmod 101)
$$

Therefore, the multiplicative inverse of 17 is

$$
17^{-1} \equiv 6 \quad(\bmod 101)
$$

Problem 3. (3.13.6) Find all solutions $(\bmod 50)$ of each modular equation.
(a) $4 x \equiv 20(\bmod 50)$
(b) $4 x \equiv 21(\bmod 50)$

Solution. (a) Since $\operatorname{gcd}(4,50)=2$ divides 20 , we divide the entire equation by 2 to get a new equation

$$
2 x \equiv 10 \quad(\bmod 25)
$$

Now $\operatorname{gcd}(2,25)=1$ and $2^{-1} \equiv 13(\bmod 25)$, so

$$
x \equiv 10 \cdot 13 \equiv 130 \equiv 5 \quad(\bmod 25)
$$

is the solution of the new equation. Therefore,

$$
x \equiv 5,30 \quad(\bmod 50)
$$

are solutions of the original equation.
(b) Since $\operatorname{gcd}(4,50)=2$ does not divide 21 , there is no solution.

Problem 4. (3.13.11) Let

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n+1}=F_{n}+F_{n-1}
$$

define the Fibonacci numbers $1,1,2,3,5,8, \ldots$.
(a) Use the Euclidean algorithm to compute $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)$ for all $n \geq 2$.
(b) Find $\operatorname{gcd}(11111111,11111)$.
(c) Let $a=111 \cdots 11$ be formed with F_{n} repeated 1's and let $b=111 \cdots 11$ be formed with F_{n-1} repeated 1's. Find $\operatorname{gcd}(a, b)$. (Hint: Compare your computations in parts (a) and (b).)

Solution. (a) We directly check that

$$
\operatorname{gcd}\left(F_{2}, F_{1}\right)=\operatorname{gcd}\left(F_{3}, F_{2}\right)=1
$$

Now assume that $n \geq 4$. Then we observe that

$$
2 F_{n-1}>F_{n}=F_{n-1}+F_{n-2}>F_{n-1}
$$

for all $n \geq 4$. Therefore, the first step of the Euclidean algorithm should be

$$
F_{n}=1 \cdot F_{n-1}+F_{n-2},
$$

so the next pair in the Euclidean algorithm is $\left(F_{n-1}, F_{n-2}\right)$. Repeating this process, we can conclude that

$$
\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=\operatorname{gcd}\left(F_{n-1}, F_{n-2}\right)=\cdots=\operatorname{gcd}\left(F_{3}, F_{2}\right)=1
$$

(b) $\operatorname{gcd}(11111111,11111)=1$ by the following Euclidean algorithm.

$$
\begin{array}{rlrl}
11111111 & =10^{3} \cdot 11111+111 & & 11111 \\
11111 & =10^{2} \cdot 111+11 & 111 \\
111 & =10 \cdot 11+1 & & 11 \\
11 & =11 \cdot 1 & 1=\operatorname{gcd}(11111111,11111)
\end{array}
$$

(c) Denote $111 \cdots 11$ formed with F_{n} repeated 1's by M_{n}, so that $a=M_{n}$ and $b=M_{n-1}$. Then

$$
\begin{array}{rr}
M_{n}= & 111 \cdots 11111 \cdots 11 \\
-10^{F_{n-2}} M_{n-1}= & 111 \cdots 11000 \cdots 00 \\
\hline M_{n-2} & =111 \cdots 11
\end{array}
$$

shows that

$$
a=10^{F_{n-2}} b+M_{n-2} .
$$

Therefore, the Euclidean algorithm proceeds as follows.

$$
\begin{aligned}
M_{n} & =10^{F_{n-2}} M_{n-1}+M_{n-2} & & M_{n-1} \\
M_{n-1} & =10^{F_{n-3}} \cdot M_{n-2}+M_{n-3} & & M_{n-2}
\end{aligned}
$$

This algorithm eventually ends with pairs $(111,11)$ and $(11,1)$ as in part (b), so we can conclude that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(M_{n}, M_{n-1}\right)=1 .
$$

Problem 5. (2.8.1) Caesar wants to arrange a secret meeting with Marc Antony, either at the Tiber (the river) or at the Coliseum (the arena). He sends the ciphertext EVIRE (using a shift cipher). However, Antony does not know the key, so he tries all possibilities. Where will he meet Caesar? What is the key? (Hint: This is a trick question.)

Solution. A decryption $x \mapsto x-4(\bmod 26)$ yields a plaintext arena and another decryption $x \mapsto x+13(\bmod 26)$ yields a plaintext river. Therefore, Antony cannot determine where to meet Caesar.

Problem 6. (2.8.7) A child has learned about affine ciphers. The parent says NONONO. The child responds with hahaha, and quickly claims that this is a decryption of the parent's message. The parent asks for the encryption function. What answer should the child give?

Solution. Let $x \mapsto \alpha x+\beta(\bmod 26)$ be the encryption function. Since it should send $h=7$ to $N=13$ and $a=0$ to $O=14$, we have

$$
7 \alpha+\beta \equiv 13 \quad(\bmod 26) \quad \text { and } \quad \beta \equiv 14 \quad(\bmod 26)
$$

From two equations, it follows that

$$
7 \alpha \equiv 25 \quad(\bmod 26) \quad \Rightarrow \quad \alpha \equiv 7^{-1} \cdot 25 \equiv 11 \quad(\bmod 26)
$$

Therefore, the encryption function is

$$
x \mapsto 11 x+14 \quad(\bmod 26) .
$$

