MATH 233: ASSIGNMENT 1

DUE: FRIDAY, FEBRUARY 2, 11:59PM ON GRADESCOPE
UNIVERSITY OF ROCHESTER, SPRING 2024

Problem 1. Let a and b be positive integers and k be an integer. Prove that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a+k b, b)
$$

using the definition of the greatest common divisors, and use this to show that the last remainder in the Euclidean algorithm is indeed the greatest common divisor of a and b.
Problem 2. (3.13.1) Show your work. Do not use a calculator.
(a) Find integers x and y such that $17 x+101 y=1$.
(b) Find 17^{-1} (the multiplicative inverse of 17) mod 101.

Problem 3. (3.13.6) Find all solutions $(\bmod 50)$ of each modular equation.
(a) $4 x \equiv 20(\bmod 50)$
(b) $4 x \equiv 21(\bmod 50)$

Problem 4. (3.13.11) Let

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n+1}=F_{n}+F_{n-1}
$$

define the Fibonacci numbers $1,1,2,3,5,8, \ldots$.
(a) Use the Euclidean algorithm to compute $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)$ for all $n \geq 2$.
(b) Find $\operatorname{gcd}(11111111,11111)$.
(c) Let $a=111 \cdots 11$ be formed with F_{n} repeated 1's and let $b=111 \cdots 11$ be formed with F_{n-1} repeated 1's. Find $\operatorname{gcd}(a, b)$. (Hint: Compare your computations in parts (a) and (b).)

Problem 5. (2.8.1) Caesar wants to arrange a secret meeting with Marc Antony, either at the Tiber (the river) or at the Coliseum (the arena). He sends the ciphertext EVIRE (using a shift cipher). However, Antony does not know the key, so he tries all possibilities. Where will he meet Caesar? What is the key? (Hint: This is a trick question.)

Problem 6. (2.8.7) A child has learned about affine ciphers. The parent says NONONO. The child responds with hahaha, and quickly claims that this is a decryption of the parent's message. The parent asks for the encryption function. What answer should the child give?

