MATH 233 SPRING 2018 MIDTERM PRACTICE

Classical ciphers

- An affine-like cipher given by $c \equiv \alpha x+\beta(\bmod 26)$ (where c is the cipher and x is plaintext) encrypts the plaintext bad as $D B H$. Find another three-letter plaintext that is encrypted as $D B H$ by this cipher.
- How many distinct, invertible affine ciphers are there for English? How is this related to $\phi(26)$? What does $\phi(26)$ represent?
- Alice and Bob are sending messages using an affine cipher. You gain access to the plain text if and its corresponding ciphertext IZ. You then intercept the ciphertext XAP. What was the corresponding plaintext?
- Alice and Bob are sending messages using an affine cipher, and you intercept the ciphertext LQHUH. You gain access to the decryption machine, and when you input the ciphertext AB the machine outputs ch. What is the plaintext corresponding to the intercepted ciphertext?
- Suppose that we know a cipher is either an affine cipher or a 2×2 Hill block cipher or a Vignère cipher with a keyword of length 2. It encrypts aarons as BESSOW. (You do not have to find the key, just give a convincing explanation of why it must be one of the ciphers or why it must not be either of the others.)
- Suppose that we know a cipher is either an affine cipher or a 2×2 Hill block cipher or a Vignère cipher with a keyword of length 2. It encrypts $a b b a$ as as $B B B A$. (You do not have to find the key, just give a convincing explanation of why it must be one of the ciphers or why it must not be either of the others.)
- Suppose that we know a cipher is either an affine cipher or a Vignère cipher with a keyword of length 2. It encrypts back as $E B H F$. (You do not have to find the key, just give a convincing explanation of why it must be one of the ciphers or why it must not be the other.)
- Suppose that we know that Alice and Bob are using either an affine cipher or a Vigenère cipher with key size 2. The plaintext aqua is decrypted as XVRG. Which sort of cipher is being used? (You do not need to find the key; just give a convincing explanation.)
- Suppose that we know that Alice and Bob are using either a Vigenère cipher with key size 2 or a Hill cipher with a 2×2 key matrix. The plaintext aardvark is decrypted as AAXRVQLM. Which sort of cipher is being used? (You do not need to find the key; just give a convincing explanation.)
- Same as above, but if the ciphertext had been Cktnxitu.
- Suppose that we have an alphabet with two letters b and a. The frequency of b is .9 and the frequency of a is .1 . We see the ciphertext

$$
A B A B A B A B A A
$$

What was the likely keyword? Explain your answer. (You may assume the keyword length is not longer than 3.)

- Suppose that we devise an encryption scheme as follows. First we take our plaintext and encrypt it using a Vignère cipher with keyword "ai". Then we take the output of that and encrypt it again, this time using a Vignère cipher with keyword epa. The cipher we obtain in this way is equivalent to a single Vignère cipher. What is the keyword for this single Vignère cipher? (Hint: You might begin by trying to figure out what the length is. Another hint: The beginning of this keyword is a word that is especially relevant this week.)

Modular arithmetic

- Does 20 have a square root mod 57 ? If so, how many does it have (Some facts: (a) 57 factors as $3 \cdot 19$, (b) 20 is equivalent to $1 \bmod 19$ and $2 \bmod 3$, (c) $19-6 \cdot 3=1$).
- Does 39 have a square root $\bmod 57$? If so, how many does it have? (39 is equivalent to $1 \bmod 19$ and $0 \bmod 3)$.
- Does $x^{2} \equiv 8 \bmod 13$ have a solution? Show your work. (Do it by checking all possibilities only if you have to - there is a better method that would work on larger primes.)
- Find a positive integer x less than 11 such that $5^{322} \equiv x(\bmod 11)$
- Let ϕ be the usual Euler ϕ function. Find $\phi(12)$.
- True or false and explain: $a^{\phi(12)+1} \equiv a(\bmod 12)$ for all positive integers a. (Hint: It is enough to check things modulo 3 and 4 by the Chinese remainder theorem.)
- How many integers n with $0 \leq n<100$ are there with the property that $\operatorname{gcd}(100, n)=1$? Explain your answer.
- Calculate $d=\operatorname{gcd}(341,1043)$ and find integers x, y so that $d=342 x+1043 y$ (Bézout identity). Find all of the solutions of $341 x=1(\bmod 1043)$.

Odds and ends

- Suppose the function f is defined by

$$
f(00)=0 ; \quad f(01)=1 ; \quad f(10)=1 ; \quad f(11)=0
$$

True or false and explain: we have $f(a \oplus b)=f(a) \oplus f(b)$ for all a, b (where a and b are each two bits).

- Suppose the function f is defined by

$$
f(00)=1 ; \quad f(01)=0 ; \quad f(10)=1 ; \quad f(11)=0
$$

True or false and explain: we have $f(a \oplus b)=f(a) \oplus f(b)$ for all a, b (where a and b are each two bits).

- In an attempt to increase security, Bob decides to double encrypt his message by using one affine cipher to encrypt, then another affine cipher to encrypt a second time. First, he encrpyts by sending x to $3 x+1$. For the second cipher he encyrpts by sending x to $5 x+11$. This turns out to be exactly the same as doing a single affine cipher encryption of $x \mapsto \alpha x+\beta$ for what α and β (each between 0 and 25)?
- In an attempt to increase security, Alice decides to double encrypt her message by using a one Vignenère cipher to encrypt, then another Vignenère cipher to encrypt a second time. For the first cipher she encrpyts with keyword "cat". For the second cipher, she encpryts with keyword "dog". This is the same as doing a single Vignenère cipher encryption with what three-letter word (note, the three letters you get might not be real English word).

