
MATH 233 SPRING 2018

FINAL PRACTICE PROBLEMS 1

MTH233 Cryptography Spring 2018 final will be at 8:30am in Hylan 102 on Tuesday May 8, 2018.

• Calculators are allowed for doing arithmetic, not for looking up information. Comput-
ers, ipads, etc. are not allowed. The exam is closed book. You may bring one sheet of
notes (you can write on both sides).

• Show your work and justify your answers. You may not receive full credit for a correct
answer if insufficient work is shown or insufficient justification is given.

• Honor pledge: “I affirm that I have not used, given nor received unauthorized aid during this
examination and that all work is my own.”

Signature:

(1) (a) Let E1 and E2 denote encryption by Vignère ciphers, not necessarily with the same keywords.
True or false and explain: we must have E1(E2(m)) = E2(E1(m)) for any plaintext m.

(b) Let E3 and E4 denote encryptions by Hill block ciphers of length 2, not necessarily the same
Hill block ciphers. True or false and explain: we must have E3(E4(m)) = E4(E3(m)) for any
plaintext m.

(c) Let E5 be Vignère encryption with keyword be and E6 be Vignère encryption with keyword
nrdn. Encrypting first with E5 and then with E6 gives a Vignère with what keyword?

Solution:
Solution:
(a) This is true: By repeating the keywords if necessary, we can assume that the keys K1 and K2

for E1 and E2, respectively, have the same length. (For example, if K1 has length 2 and K2 has
length 3, then we could repeat K1 three times and K2 twice to get two keywords of length six.)
Then the keyword for E1 ◦ E2 is K2 + K1 (mod 26) and the keyword for E2 ◦ E1 is K1 + K2

(mod 26), and the two are the same since addition mod 26 is commutative.
(b) This is false: Let E3 and E4 be encryption using the matrices

M3 =

[
1 0
1 1

]
and M4 =

[
1 1
0 1

]
.

Let m = (1, 0). Then

E3(E4(m)) = mM4M3 = (1, 0)

[
2 1
1 1

]
= (2, 1),

but

E4(E3(m)) = mM3M4 = (1, 0)

[
1 1
1 2

]
= (1, 1).

Note: The reason the order doesn’t matter for (a) is that addition mod 26 is commutative,
and the reason order does matter for (b) is that matrix multiplication is not commutative.

(c) The keyword be corresponds to (1, 4) and nrdn corresponds to (13, 17, 3, 13), so the keyword
for the double encryption is

(1, 4, 1, 4) + (13, 17, 3, 13) ≡ (14, 21, 4, 17) (mod 26),

which corresponds to the keyword over. (Note that we repeated be twice and only repeated
nrdn once.)
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(2) An affine-like cipher given by c ≡ αx+β (mod 26) (where c is the cipher and x is plaintext) encrypts
the plaintext abe as ben. Is abe the only three letter text that is encrypted as ben by this affine-like
cipher? If “yes”, explain why. If “no”, then provide another example of plaintext that enrcrypts as
ben under this affine-like cipher.

Solution:
Solution: Since abe is encrypted to ben, we have

0 7→ 1, 1 7→ 4, 4 7→ 13.

Let f(x) = ax+ b be the affine encryption function. Then

f(0) ≡ 1 (mod 26) =⇒ a · 0 + b ≡ 1 (mod 26) =⇒ b ≡ 1 (mod 26).

We also have

f(1) ≡ 4 (mod 26) =⇒ a · 1 + b ≡ 4 (mod 26) =⇒ a+ 1 ≡ 4 (mod 26) =⇒ a ≡ 3 (mod 26).

Therefore f(x) ≡ 3x + 1 (mod 26). Since gcd(3, 26) = 1, 3 is invertible mod 26, so the function
f(x) is one-to-one. In other words, every letter of ciphertext can be obtained by exactly one letter
of plaintext. Therefore abe is the only plaintext that encrypts to ben. �

(3) (a) Find all positive integers 0 < x < 21 such that x2 ≡ 16 (mod 21).
(b) Calculate 229 (mod 21). Your answer should be an integer between 0 and 20.

Solution:
Solution:
(a) Since 21 = 3 · 7 is a prime factorization, we want to solve

x2 ≡ 16 ≡ 1 (mod 3)

x2 ≡ 16 ≡ 2 (mod 7).

If a nonzero number has a square root modulo a prime p, then it has exactly two square roots.
Mod 3, the square roots of 1 are 1 and 2; mod 7, the square roots of 2 are 3 and 4. This
gives a system of four congruences, each of which has a unique solution mod 21 by the Chinese
remainder theorem:{

x ≡ 1 (mod 3)

x ≡ 3 (mod 7)

}
=⇒ x ≡ 10 (mod 21){

x ≡ 1 (mod 3)

x ≡ 4 (mod 7)

}
=⇒ x ≡ 4 (mod 21){

x ≡ 2 (mod 3)

x ≡ 3 (mod 7)

}
=⇒ x ≡ 17 (mod 21){

x ≡ 2 (mod 3)

x ≡ 4 (mod 7)

}
=⇒ x ≡ 11 (mod 21)

(b) Since 21 = 3 · 7, we have φ(21) = (3− 1)(7− 1) = 12. Since 29 ≡ 5 (mod 12), we have

229 ≡ 25 ≡ 32 ≡ 11 (mod 21).

�

(4) Suppose we have an RSA encryption system with

n = 991 · 607 = 601537.
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(a) Suppose that the encryption exponent is e = 17. Find d (mod 4), where d is the decryption
exponent. (That is, find out what d is modulo 4.) [Hint: 4 divides φ(n).]

(b) Suppose that the encryption exponent is e = 19. Find d (mod 4), where d is the decryption
exponent. (That is, find out what d is modulo 4.)

Solution:
Solution: Let p = 991 and q = 607. The decryption exponent d satisfies de ≡ 1 (mod φ(n)); that
is, φ(n) | (de − 1). Since φ(n) = (p − 1)(q − 1), and since both p − 1 and q − 1 are even, φ(n) is
divisible by 4. Thus 4 | (de− 1), so de ≡ 1 (mod 4); hence

d ≡ e−1 (mod 4).

(a) Since e = 17 ≡ 1 (mod 4), we have

d ≡ e−1 ≡ 1−1 ≡ 1 (mod 4).

(b) Since e = 19 ≡ 3 (mod 4), we have

d ≡ e−1 ≡ 3−1 ≡ 3 (mod 4).

�

(5) Given that 602 ≡ 1 (mod 3599), give a factorization of 3599.

Solution:
Solution: Since 602 ≡ 1 (mod 3599), we have

602 − 1 ≡ 0 (mod 3599) =⇒ (60− 1)(60 + 1) ≡ 0 (mod 3599) =⇒ 59 · 61 ≡ 0 (mod 3599).

This shows that 3599 | 59 · 61. Since 59 and 61 are both prime, the only divisors of 59 · 61 are 1, 59,
61, and 59 · 61. Clearly 3599 /∈ {1, 59, 61}, so 3599 = 59 · 61. �

(6) Let p = 1021. Then L2(3) = 10, that is 210 ≡ 3 (mod 1021).
(a) Find L2(9).
(b) Find L2(6).

Solution:
Solution: We’re given that 210 ≡ 3 (mod p).
(a) Since

9 ≡ 32 ≡
(
210
)2 ≡ 220 (mod p),

we have L2(9) = 20.
(b) Since

6 ≡ 2 · 3 ≡ 2 · 210 ≡ 211 (mod p),

we have L2(6) = 11.
�

(7) Using the RSA signature algorithm, Alice has n = 33 and e = 3 (that is, the RSA encryption here is
c ≡ m3 (mod 33)). Which of the following pairs (m,md) (where d is her secret decryption exponent)
has been signed by Alice?
(a) (27, 3).
(b) (11, 7).
(c) (31, 4).

(8) Solution:
Solution: We just have to check, for each pair (m, k), whether k3 ≡ m (mod 33). If so, then Alice
signed the message; if not, she did not sign the message.
(a) k3 ≡ 33 ≡ 27 ≡ m (mod 33), so Alice did sign the message.
(b) k3 ≡ 73 ≡ 13 6≡ m (mod 33), so Alice did not sign the message.
(c) k3 ≡ 43 ≡ 31 ≡ m (mod 33), so Alice did sign the message.
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Suppose that we have three DES keys K1, K2, and K3 (each 56 bits). For each encryption method

below, state how long it should take to find the break the encryption system (i.e. find the relevant
keys), given that you know m and c. Explain whether you are using meet-in-the-middle and how
you are using. (As usual EKi

denotes DES encryption with the key EKi
).

(a) c = EK1(EK2(m)).
(b) c = EK1(EK2(EK3(m))).
(c) c = EK1

(EK2
(EK2

(m))).
(d) c = EK1

(EK2
(EK1

(m))).

Solution:
Solution. (a) Using meet-in-the-middle by comparing DK1

(c) with EK2
(m), this should take about

2 · 256 steps. (b) Using meet-in-the-middle with DK1
(c) and EK2

(EK3
(m)), this will take about

256 + 256·2 steps (2112 is a fine approximation). (Note that there are three keys, so one might hope
to get 256·3, but you don’t because of meet-in-the-middle attacks.) (c) Is exactly like (a), using
EK2(EK2(m)) (only 256 possibilities since it is K2 twice) in place of EK2(m), so 2 · 256 steps. For
(d), there are no know meet-in-the-middle improvements so 2112 steps.

�

(9) The hash function SHA-224 has 224 bit output. We denote the function as h (where h(m) is SHA-224
applied to m for any m of length 2128 − 1 or fewer bits). (You may assume that this hash function
is only attackable by brute force attacks.)
(a) About how long should it take to find some m1 6= m2 such that h(m1) = h(m2)? (Explain your

answer.)
(b) Given a fixed m, about how long should it take to find some m′ 6= m such that that h(m′) =

h(m)? (Explain your answer.)

Solution:
Solution.

(a)This is the birthday problem with a search space of size 2224, so one expects approximately√
2224 = 2112. (Technically, we say that calculating each hash takes about 224 steps so we might say

224 · 2112, but that is not important.)
(b) In this case, you have to hit a specific value in your search space, so it should take about 2224

steps (224 · 2224 is a more precise estimate).
�

(10) Suppose we define a hash function by h(m) = 3m (mod 7) + 7 · (2m (mod 11)). Find two integers
m1 6= m2 with 0 < m1,m2 < 32 such that h(m1) = h(m2).

Solution:
Solution. Since φ(7) = 6 and φ(11) = 10, we see that 330 is congruent to 1 modulo 7 and 230 is
congruent to 1 modulo 7. Thus, m1 = 0 and m2 = 31 will work. �

(11) The purpose of this problem is to show that for any RSA set-up with n = pq, for p 6= q both odd
primes, that there are at least four choices of encryption exponent e < (p−1)(q−1) such that e2 ≡ 1
(mod (p− 1)(q − 1)).
(a) Let m ≥ 2. Show that 1, 2m+1 − 1, 2m + 1, and 2m − 1 are all distinct (no two are equal to

each other) and that each satisfies x2 ≡ 1 (mod 2m+1).
(b) Let n > 1 be any odd number. Show that there are at least 4 distinct positive integers x < 22n

such that x2 ≡ 1 (mod 22n).
(c) Let p and q be odd primes. Show that (p− 1)(q − 1) is divisible by 4.
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(d) Let p and q be any odd primes with p 6= q. Show that there are at least 4 distinct positive
integers e < (p−1)(q−1) such that e2 ≡ 1 (mod (p−1)(q−1)). [Hint: Let 2m+1 be the highest
power of 2 that divides (p − 1)(q − 1). Show that if m + 1 ≤ 2, then (p − 1)(q − 1) must have
an odd prime factor.]

Solution:
Solution. For (a), the numbers are clearly distinct since m ≥ 2. To see this note that 2m + 1

and 2m − 1 are clearly distinct and that any other pair differ by at least 2m − 2 > −0. Now, clearly
1 and 2m+1 − 1 clearly square to 1 modulo 2m+1. For the other two, simply square and look at the
remainder modulo 2m+1, e.g.

(2m + 1)2 = 22m + 2 · 2m + 1 ≡ 1 (mod 2m+1).

For (b), note that it follows immediately from the Chinese remainder and that furthermore 1, 4m−1,
2m − 1 and 2m + 1 all work. For (c), observe that (p − 1) and (q − 1) are both even. For the last
one, we note that (p − 1)(q − 1) is at least 8. If it is divisible by 8, we get four square roots of one
modulo 2m+1 giving us at least four modulo (p − 1)(q − 1) by Chinese remainder. Otherwise, we
apply (c).

�

(12) Using the following facts:
(i, 3i (mod 31)), i = 0 . . . 6 is [(0, 1), (1, 3), (2, 9), (3, 27), (4, 19), (5, 26)]
(i, 11 ∗ 3−i∗6 (mod 31)), i = 0 . . . 11[(0, 11), (1, 22), (2, 13), (3, 26), (4, 21), (5, 11)]
calculate x = Log3(11) where 0 ≤ x < 30. 3 is a primitive root of 31.
Why was 6 the appropriate number to use in constructing the list above?

Solution:
This is the “baby-step, giant-step” method for solving for a discrete log. By constructing two lists

and comparing the results the time used is converted from N to
√
N steps plus a comparison search

(which is log(N)). Since 62 > N = 31 it is the right choice for the length of the list.
In the list above there is a match when i = 5 in the first list and i = 3 in the second hence

35 ≡ 11 · 3−3·6 (mod 31) or 323 ≡ 11 (mod 31)
�

(13) Find the inverse of a polynomial in a finite field.
Let GF = {a0 + a1X + a2X

2 + a3X
3 + · · · | (mod X4 +X2 +X + 1)}

X4 +X2 +X + 1 is an irreducible polynomial.
Find the inverse of g = X + 1 in this field.

Solution:
As with all finite modules we use the euclidean algorithm. X4+X2+X+1 = (X+1)(X3+X2+1).

Oops. It turns out X4 +X2 +X + 1 is not irreducible and X + 1 as one of its factors does not have
an inverse. The irreducible polynomial should have been X4 + X3 + X2 + X + 1 (there are other
choices). In that case
X4 + X3 + X2 + X + 1 = (X3 + X)(X + 1) + 1 You don’t even need to continue the euclidean

algorithm we have

1 = gcd(X4 +X3 +X2 +X + 1, X + 1) = (X + 1)(X3 +X) + (X4 +X3 +X2 +X + 1) · 1
and the inverse of (X + 1) is (X3 +X)

�
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(14) Set p = 601 ( a prime).
(a) Define the properties of a primitive root α mod p.
A primitive root (or generator) has the property that αk maps onto all of the invertible elements

mod p hence αk ≡ 1 iff k = p− 1 and using fermat’s theorem α(p−1)/2 ≡ −1
(b) Note that 600 = 23 · 3 · 52. Assume also that a calculation shows that
7300 ≡ 600, 7200 ≡ 576, 7120 ≡ 423 (mod 601)
Show that 7 must be a primitive root mod 601.

Solution:
Suppose that k = ord(7) is the smallest power where 7k ≡ 1 (mod 601). Then k|600 and if α is

not primitive then k < 600, hence k|300 or k|200 or k|120. If k divides 300 for example then 7≡1
(mod 601) but this is not the case. Similarly for 200 and 120 hence k = 600 and 7 is a primitive
root. �

(15)
(a) Compute 65 (mod 11).
(b)Let p = 11. Then 2 is a primitive root. Suppose that 2x ≡ 6 (mod 11) Without finding the

value of x determine whether x is even or odd.

Solution:
(a) 62 ≡ 3 (mod 11) Hence 64 ≡ 9, 65 ≡ 45 ≡ 1 (mod 11).
(b) Given 2x ≡ 6 (mod 11) raise both sides to the (p − 1)/2 = (11 − 1)/2 = 5 power. Since

2(p−1)/2 = −1 we have (−1)x ≡ 65 ≡ 1 (mod 11) so x must be even. �
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