Math 210 Introduction to Financial Mathematics

Question 1. (a) Consider an annuity that pays 1 every quarter for M years. In other words, the payment times are $T=t+\frac{1}{4}, t+\frac{2}{4}, \ldots, t+\frac{4 M}{4}$. Show that the value at present time t is

$$
V_{t}=\frac{1-\left(1+r_{4} / 4\right)^{-4 M}}{r_{4} / 4}
$$

assuming the quarterly compounded interest rate has constant value r_{4}. Hint: The result in Exercise 4 HW2 might be helpful.
(b) A fixed rate bond with notional N, coupon c, start date T_{0}, maturity T_{n}, and term length α is an asset that pays N at time T_{n} and coupon payments $\alpha N c$ at times T_{i} for $i=1, \ldots, n$, where $T_{i+1}=T_{i}+\alpha$. It is equivalent to an annuity plus N ZCBs. Consider a fixed rate bond with notional N and coupon c that starts now, matures M years from now, and has quarterly coupon payments. Show that the value at present time t is

$$
V_{t}=\frac{c N}{4} \cdot \frac{1-\left(1+r_{4} / 4\right)^{-4 M}}{r_{4} / 4}+N\left(1+r_{4} / 4\right)^{-4 M}
$$

assuming the quarterly compounded interest rate has constant value r_{4}.

Solution:

(a) The annuity is equivalent to the following collection of ZCBs.

- 1 ZCB with maturity $T=t+\frac{1}{4}$
- 1 ZCB with maturity $T=t+\frac{2}{4}$
-
- $1 \mathcal{Z C B}$ with maturity $T=t+\frac{i}{4}$
-
- 1 ZCB with maturity $T=t+\frac{4 M}{4}$

By the result of Exercise $4 \mathrm{FCD}_{2}$, the value at time t of the $\mathcal{Z C B}$ maturing at $T=t+\frac{i}{4}$ is

$$
Z(t, t+i / 4)=\left(1+r_{4} / 4\right)^{-4(t+i / 4-t)}=\left(1+r_{4} / 4\right)^{-i}
$$

Therefore the value at time t of the annuity is

$$
V_{t}=\sum_{i=1}^{4 M} Z(t, t+i / 4)=\sum_{i=1}^{4 M}\left(1+r_{4} / 4\right)^{-4(t+i / 4-t)}=\sum_{i=1}^{4 M}\left(1+r_{4} / 4\right)^{-i}
$$

The final sum can be evaluated by the usual geometric sum formula (see the next solution), and we get

$$
V_{t}=\frac{1-\left(1+r_{4} / 4\right)^{-4 M}}{r_{4} / 4} .
$$

(b) The bond is equivalent to $\alpha c N=\frac{1}{4} c N$ copies of the annuity from part (a) (or the annuity in part (a) paying $\alpha c N=\frac{1}{4} c N$ times as much) plus N ZCBs. Therefore the value of the bond at time t is

$$
V_{t}=\frac{c N}{4} \cdot \frac{1-\left(1+r_{4} / 4\right)^{-4 M}}{r_{4} / 4}+N\left(1+r_{4} / 4\right)^{-4 M}
$$

Question 2. Consider an annuity that pays 1 every quarter for M years. In other words, the payment times are $T=t+\frac{1}{4}, t+\frac{2}{4}, \ldots, t+\frac{4 M}{4}$. Show that the value at present time t is

$$
V_{t}=\frac{1-\left(1+r_{8} / 8\right)^{-8 M}}{\left(1+r_{8} / 8\right)^{2}-1}
$$

assuming the interest rate with compounding 8 times per year has constant value r_{8}. Hint: The result in Exercise 4 HW2 might be helpful.

Solution:

The annuity is equivalent to the following collection of ZCBs.

- 1 ZCB with maturity $T=t+\frac{1}{4}$
- 1 ZCB with maturity $T=t+\frac{2}{4}$
-
- 1 ZCB with maturity $T=t+\frac{i}{4}$
-
- $1 \mathcal{Z C B}$ with maturity $T=t+\frac{4 M}{4}$

By the result of Exercise $4 \mathcal{J C O}_{2}$, the value at time t of the $\mathcal{Z C B}$ maturing at $T=t+\frac{i}{4}$ is

$$
Z(t, t+i / 4)=\left(1+r_{8} / 8\right)^{-8(t+i / 4-t)}=\left(1+r_{8} / 8\right)^{-2 i}=\left((1+r / 8)^{2}\right)^{-i}
$$

Therefore the value at time t of the annuity is

$$
V_{t}=\sum_{i=1}^{4 M} Z(t, t+i / 4)=\sum_{i=1}^{4 M}\left(\left(1+r_{8} / 8\right)^{2}\right)^{-i}
$$

Using geometric sum formula

$$
\sum_{i=1}^{N} x^{i}=\frac{x-x^{N+1}}{1-x}
$$

with $x=\left(1+r_{8} / 8\right)^{-2}$, and $N=4 M$, we have

$$
V_{t}=\sum_{i=1}^{4 M}\left(\left(1+r_{8} / 8\right)^{2}\right)^{-i}=\frac{\left(1+r_{8} / 8\right)^{-2}-\left(1+r_{8} / 8\right)^{-8 M-2}}{1-\left(1+r_{8} / 8\right)^{-2}} .
$$

Finally, factoring $\left(1+r_{8} / 8\right)^{-2}$ both in the denominator and numerator and simplifying we obtain

$$
V_{t}=\frac{1-\left(1+r_{8} / 8\right)^{-8 M}}{\left(1+r_{8} / 8\right)^{2}-1} .
$$

Question 3. The current US Dollar (USD) to Japense Yen (JPY) exchange rate is $0.0076 U S D / J P Y$.
(a) Find the JPY to USD exchange rate.
(b) Find the value in USD of 300,000 JPY

Solution:

(a)

$$
\frac{1}{0.0076} \frac{\mathrm{JPy}}{\text { USD }} \approx 131.5789 \frac{\mathrm{JPy}}{\text { USD }}
$$

(b)

$$
300,000 \mathrm{gpy}=300,000(0.0076) \mathrm{Jpy} \frac{\mathrm{USD}}{\text { Jpy }}=2280 \text { USD }
$$

Question 4. Consider a forward with delivery price 200 and maturity T. Suppose the underlying asset has price

$$
S_{T}=\left\{\begin{array}{c}
150 \text { with probability } 0.3 \\
200 \text { with probability } 0.5 \\
250 \text { with probability } 0.2
\end{array} .\right.
$$

(a) Find the payoff long the forward.
(b) Find the expected value of the forward to the short counterparty at maturity.

Solution:

(a) Delivery price $=K=200$, so

$$
\begin{aligned}
\text { long payoff } & =g\left(S_{T}\right)=S_{T}-K \\
& =\left\{\begin{array}{ll}
150-200 & \text { with probability } 0.3 \\
200-200 & \text { with probability } 0.5 \\
250-200 & \text { with probability } 0.2
\end{array}=\left\{\begin{array}{cl}
-50 & \text { with probability } 0.3 \\
0 & \text { with probability } 0.5 \\
50 & \text { with probability } 0.2
\end{array}\right.\right.
\end{aligned}
$$

(b)
value of short forward at maturity $=-$ value of long forward maturity $=-V_{K}(T, T)=-g\left(S_{T}\right)$
expected value of short forward at maturity $=-\mathbb{E}\left(g\left(S_{T}\right)\right)=-[(-50)(0.3)+(0)(0.5)+(50)(0.2)]=5$

Question 5. The current time is $t=0$. Suppose the present value of a forward contract on a certain asset is 10. The delivery price is $K=100$ and the maturity is $T=5$. Suppose the forward price on the asset is 110 . Suppose the continuous interest rate is 2% for time 0 to T. Determine whether there is an arbitrage opportunity. If there is, find an arbitrage portfolio. Verify the portfolio you construct is an arbitrage portfolio.

Solution:

$$
\begin{align*}
V_{K}(t, T)=10 \text { and }(F(t, T)-K) e^{-r(T-t)} & =(110-100) e^{-(0.02)(5-0)}=9.048 \ldots . S_{0} \\
V_{K}(t, T) & >(F(t, T)-K) e^{-r(T-t)} \tag{1}
\end{align*}
$$

This contradicts the no-arbitrage relationship $V_{K}(t, T)=(F(t, T)-K) e^{-r(T-t)}$. So there exists an arbitrage portfolio.

Begin Ungraded Part
Here is a strategy for how to find an arbitrage portfolio. You are not reguired to put this in your solution. It is included for instruction.

Rewrite (1) as

$$
V_{K}(t, T) e^{r(T-t)}>F(t, T)-K
$$

We plan to build portfolios A and B with $V^{A}(t)=V^{B}(t), V^{A}(T)=V_{K}(t, T) e^{r(T-t)}$ and $V^{B}(T)=F(t, T)-K$. Then $C=A-B$ will be an arbitrage portfolio because $V^{C}(t)=0$ and $V^{C}(T)=V_{K}(t, T) e^{r(T-t)}-(F(t, T)-K)>$ 0 with probability one.

Let's start by building B at time t to get $V^{B}(T)=F(t, T)-K$. To get the $F(t, T)$ term, it makes sense to add a short forward (on the asset) with delivery price $F(t, T)$ and maturity T because the value at maturity of the short forward will be $F(t, T)-S_{T}$. Pretty good. But we want to replace the $-S_{T}$ by $-K$. So we add a long forward (on the asset) with delivery price K and maturity T because its value at maturity will be $S_{T}-K$. Then $V^{B}(T)=F(t, T)-S_{T}+S_{T}-K=F(t, T)-K$. Derfect. We note that $V^{B}(t)=-V_{F(t, T)}(t, T)+V_{K}(t, T)=$ $V_{K}(t, T)$.

Now let's build A at time t to get $V^{A}(t)=V^{B}(t)=V_{K}(t, T)$ and $V^{A}(T)=V_{K}(t, T) e^{r(T-t)}$. The most obvious thing to try is $V_{K}(t, T)$ cash. It works perfectly. Alternatively, we can use $V_{K}(t, T) / Z(t, T)$ ZCBs with maturity T.

End Ungraded Part
An arbitrage portfolio is
$C=A-B: V_{K}(t, T)$ cash;-1 short forward with delivery price $F(t, T)$ and maturity $T ;-1$ long forward with delivery price K and maturity T.
In other words,
$C=A-B: V_{K}(t, T)$ cash; 1 long forward with delivery price $F(t, T)$ and maturity $T ; 1$ short forward with delivery price K and maturity T.
Here is the verification that C is an arbitrage portfolio:
$V^{C}(t)=V_{K}(t, T)+V_{F(t, T)}(t, T)-V_{K}(t, T)=0$
$V^{C}(T)=V_{K}(t, T) e^{r(T-t)}+S_{T}-F(t, T)+K-S_{T}=V_{K}(t, T) e^{r(T-t)}-(F(t, T)-K)>0$.
Other arbitrage portfolios are possible.

