MATH 209: Homework 2 - due Friday, 2/2 at 2 pm on gradescope

(P1) Use moment generating functions to show that if X and Y are independent Poisson distributed variables, then $X+Y$ is also Poisson distributed.
(P2) Recall when n is a positive integer, the distribution $\operatorname{Gamma}(n, \lambda)$ is also called the Erlang distribution, denoted $E_{n}(\lambda)$. Let X_{1}, \ldots, X_{n} be independent exponentially distributed random variables, each with the same parameter λ, and let $X=X_{1}+\ldots+X_{n}$. In this problem you will show that $X \sim E_{n}(\lambda)$.
(a) Recall at the end of the review notes for MGFs/Convolution/Sums, we showed that $X_{1}+X_{2} \sim$ $E_{2}(\lambda)$ using convolution. Use convolution to show that $X_{1}+X_{2}+X_{3} \sim E_{3}(\lambda)$.
(b) More generally, use convolution to show that if k is a positive integer, $S \sim \operatorname{Exp}(\lambda)$, and $T \sim E_{k}(\lambda)$, then $S+T \sim E_{k+1}(\lambda)$. Hint: you will need to compute the integral $\int_{0}^{t} x^{k-1} e^{-\lambda x} e^{-\lambda(t-x)} d x$.
(c) Explain why part (b) allows us to conclude that $X \sim E_{n}(\lambda)$. There is not much to say here, just put the pieces together.
(d) Find the moment generating function of X. Hint: use that $X=X_{1}+\ldots+X_{n}$ and the mgf of an exponential variable.
(P3) Suppose the number of customers served at the meat department at the Pittsford Wegmans from 9 am to 5 pm is well-modeled by a Poisson process with intensity 15 customers per hour. Answer the following.
(a) What is the probability that no customers were served from 12 to $12: 15 \mathrm{pm}$?
(b) What is the probability the first customer is not served before 9:15am?
(c) What is the probability the third customer is not served before 9:15am?
(d) Suppose it is 1 pm and the last customer was served at $12: 30 \mathrm{pm}$. What is the probability the next customer is not served before $1: 15 \mathrm{pm}$?
(P4) As in P3, suppose the number of customers served at the meat department at the Pittsford Wegmans from 9 am to 5 pm is well-modeled by a Poisson process with intensity λ customers per hour. Suppose exactly 40 customers were served yesterday from 9am to 11am. Answer the following. Note: for parts (a) and (b), use definition 1.3.4 of our notes, and simplify your answer as much as possible.
(a) What is the probability the first customer was served after 9:15am?
(b) Find the probability the second customer was served after 9:15am?
(c) Find the probability that there are k calls in an interval $(a, b] \subseteq(9,11]$. Does the result depend on the intensity λ ? Explain why your answer should be expected.

