Homework 9 Math 202 Stochastic Processes Spring 2024

Question 1. Let X_{t} be a continuous-time birth and death process with birth rate $\lambda_{n}=1+\frac{1}{n+1}$ and death rate $\mu_{n}=1$. Is this process positive recurrent, null recurrent or transient? What if $\lambda_{n}=1-\frac{1}{n+2}$?

Solution:

For $\lambda_{n}=1+\frac{1}{n+1}=\frac{n+2}{n+1}$, and $\lambda_{1} \lambda_{2} \cdots \lambda_{n}=\frac{\not \partial}{2} \frac{1}{\beta} \cdots \frac{n+2}{n+1}=\frac{n+2}{2}$ we have

$$
\sum_{n=1}^{\infty} \frac{\mu_{1} \cdots \mu_{n}}{\lambda_{1} \cdots \lambda_{n}}=\sum_{n=1}^{\infty} \frac{2}{n+2}=\infty
$$

So, the chain is not transient. On the other hand

$$
\sum_{n=0}^{\infty} \frac{\lambda_{0} \cdots \lambda_{n-1}}{\mu_{1} \cdots \mu_{n}}=\sum_{n=0}^{\infty} n+1=\infty
$$

So, the chain is not positive recurrent. Hence it is null recurrent.
For $\lambda_{n}=1-\frac{1}{n+2}=\frac{n+1}{n+2}$, and $\lambda_{1} \lambda_{2} \cdots \lambda_{n}=\frac{2}{\beta} \frac{2}{4} \cdots \frac{n+1}{n+2}=\frac{2}{n+2}$ we have

$$
\sum_{n=1}^{\infty} \frac{\mu_{1} \cdots \mu_{n}}{\lambda_{1} \cdots \lambda_{n}}=\sum_{n=1}^{\infty} n+2=\infty
$$

So, the chain is not transient. On the other hand

$$
\sum_{n=0}^{\infty} \frac{\lambda_{0} \cdots \lambda_{n-1}}{\mu_{1} \cdots \mu_{n}}=\sum_{n=0}^{\infty} n+1=\infty
$$

So, the chain is not positive recurrent. Hence it is null recurrent.

Question 2. Consider the population model with immigration. For which values of μ, λ, ν is the chain positive recurrent, null recurrent or transient?

Hint: You might use for any exponent a and for $|x|<1, \quad(1+x)^{a}=\sum_{n=0}^{\infty} \frac{a(a-1)(a-2) \ldots(a-n+1)}{n!} x^{n}$ and the gamma function

$$
\Gamma(x)=\lim _{n \rightarrow \infty} \frac{n!}{x(x+1) \cdots(x+n)} n^{x}
$$

Solution:

We have

$$
\lambda_{n}=n \lambda+\nu, \mu_{n}=n \mu
$$

Let us analyze the cases:

- $\lambda>\mu$: Note that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu_{1} \cdots \mu_{n}}{\lambda_{1} \cdots \lambda_{n}}=\sum_{n=1}^{\infty}\left(\frac{\mu}{\lambda}\right)^{n} \frac{n!}{\left(\frac{\nu}{\lambda}+1\right)\left(\frac{\nu}{\lambda}+2\right) \cdots\left(\frac{\nu}{\lambda}+n\right)}:=\sum a_{n}<\infty \tag{1}
\end{equation*}
$$

since by ratio test

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\left(\frac{\mu}{\lambda}\right)^{n+1} \frac{(n+1)!}{\left(\frac{\nu}{\lambda}+1\right)\left(\frac{\nu}{\lambda}+2\right) \cdots\left(\frac{\nu}{\lambda}+n\right)\left(\frac{\nu}{\lambda}+n+1\right)}}{n}=\lim _{n \rightarrow \infty} \frac{(n+1) \mu}{\left(\frac{\mu}{\lambda}\right)^{n} \frac{\mu}{\left(\frac{\nu}{\lambda}+1\right)\left(\frac{\nu}{\lambda}+2\right) \cdots\left(\frac{\nu}{\lambda}+n\right)}}=\frac{\mu}{\lambda}<1 .
$$

So, the chain is transient if $\lambda>\mu$.

- $\lambda<\mu$:

$$
\begin{equation*}
q=\sum_{n=0}^{\infty} \frac{\lambda_{0} \cdots \lambda_{n-1}}{\mu_{1} \cdots \mu_{n}}=\sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{n} \frac{\frac{\nu}{\lambda}\left(\frac{\nu}{\lambda}+1\right)\left(\frac{\nu}{\lambda}+2\right) \cdots\left(\frac{\nu}{\lambda}+n-1\right)}{n!}=\left(1-\frac{\lambda}{\mu}\right)^{-\nu / \lambda} \tag{2}
\end{equation*}
$$

if $\lambda<\mu$. One can also just show that this series converges by relying on the ratio test again.

- $\lambda=\mu$: Note that $\nu=0$ case covered in class. So we will consider $\nu>0$. Again we consider the series (1), and (2) but a little more care. Note that (1) becomes

$$
\sum_{n=1}^{\infty} \frac{n!}{\left(\frac{\nu}{\lambda}+1\right) \cdots\left(\frac{\nu}{\lambda}+n\right)}:=\sum a_{n} .
$$

We will use the limit comparison test to compare this series with $\sum n^{-\nu / \lambda}$. Consider the limit

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{-\nu / \lambda}}=\lim _{n \rightarrow \infty} \frac{n!}{\left(\frac{\nu}{\lambda}+1\right) \cdots\left(\frac{\nu}{\lambda}+n\right)} n^{\nu / \lambda}=\Gamma\left(\frac{\nu}{\lambda}\right) \frac{\nu}{\lambda}>0
$$

But the series $\sum n^{-\nu / \lambda}$ converges iff $\nu / \lambda>1$. Hence the series in discussion also converges iff $\nu>\lambda$. And the chain is transient in this case.

Similarly, for the case $\nu \leq \lambda$, we can consider the series in (2):

$$
q=\sum_{n=0}^{\infty} \frac{\frac{\nu}{\lambda}\left(\frac{\nu}{\lambda}+1\right)\left(\frac{\nu}{\lambda}+2\right) \cdots\left(\frac{\nu}{\lambda}+n-1\right)}{n!}=: \sum b_{n}
$$

where we will compare it with the series $\sum n^{-(\lambda-\nu) / \lambda}$. Similarly, consider the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{b_{n}}{n^{-(\lambda-\nu) / \lambda}} & =\lim _{n \rightarrow \infty} \frac{\frac{\nu}{\lambda}\left(\frac{\nu}{\lambda}+1\right) \cdots\left(\frac{\nu}{\lambda}+n-1\right)}{n!} n^{(\lambda-\nu) / \lambda} \\
& =\lim _{n \rightarrow \infty} \frac{\left(\frac{\nu-\lambda}{\lambda}+1\right)\left(\frac{\nu-\lambda}{\lambda}+2\right) \cdots\left(\frac{\nu-\lambda}{\lambda}+n\right)}{n!} n^{(\lambda-\nu) / \lambda} \\
& =\frac{\frac{\nu-\lambda}{\lambda}}{\Gamma\left(\frac{\nu-\lambda}{\lambda}\right)}>0
\end{aligned}
$$

But the series $\sum n^{-(\lambda-\nu) / \lambda}$ diverges for $\nu \leq \lambda$. Hence the series in discussion also diverges for $\nu \leq \lambda$ and the chain is null recurrent.

Hence, we conclude:

- $\lambda>\mu$, the chain is transient,
- $\lambda<\mu$, the chain is positive recurrent,
- $\lambda=\mu$,
$-\nu>\lambda=\mu$, the chain is transient,
$-\nu \leq \lambda=\mu$ (including the case $\nu=0$), the chain is null recurrent.

Question 3. Consider a birth and death process with $\lambda_{n}=\frac{1}{n+1}$ and $\mu_{n}=1$. Show that the process is positive recurrent and give the stationary distribution.

Solution:

Note that

$$
q=\sum_{n=1}^{\infty} \frac{\lambda_{0} \cdots \lambda_{n-1}}{\mu_{1} \cdots \mu_{n}}=\sum_{n=1}^{\infty} \frac{1}{n!}=e-1<\infty
$$

the chain is positive recurrent. Solving for $\pi(n)=\frac{\lambda_{0} \cdots \lambda_{n-1}}{\mu_{1} \cdots \mu_{n}} \pi(0)=\frac{\pi(0)}{n!}$ and $\sum_{n=0}^{\infty} \pi(n)=\sum_{n=0}^{\infty} \frac{\pi(0)}{n!}=$ $e \pi(0)=1$. Hence $\pi(0)=1 / e$ and $\pi(n)=1 / e n!$.

Question 4. Consider the experiment of rolling two dice. Let X be the value of the first roll and Y the sum of the two dice. Find $\mathrm{E}[X \mid Y]$, i.e give the value of $\mathrm{E}[X \mid Y](y)$ for all y.

Solution:

Note that using the independence of first and second roll, we have

$$
p(x, y):=\mathrm{P}(X=x, Y=y)=\mathrm{P}\left(X=x, X_{2}=y-x\right)=\frac{1[x \in\{(y-6) \vee 1, \cdots,(y-1) \wedge 6\}]}{36} .
$$

Let denote $y^{*}:=(y-1) \wedge 6$ and $y_{*}:=(y-6) \vee 1$. Using this notation

$$
p_{Y}(y):=\mathrm{P}(Y=y)=\sum_{x=1}^{6} p(x, y)=\sum_{x=1}^{6} \frac{1\left[x \in\left\{y_{*}, \cdots, y^{*}\right\}\right]}{36}=\frac{y^{*}-y_{*}+1}{36} .
$$

and so

$$
\begin{aligned}
\mathrm{E}[X \mid Y=y] & =\sum_{x=1}^{6} \frac{x p(x, y)}{p_{Y}(y)}=\frac{1}{p_{Y}(y)} \sum_{x=1}^{6} x \frac{1\left[x \in\left\{y_{*}, \cdots, y^{*}\right\}\right]}{36}= \\
& =\frac{\left(y^{*}-y_{*}+1\right)\left(y^{*}+y_{*}\right)}{2(36)} \frac{36}{y^{*}-y_{*}+1}=\frac{y^{*}+y_{*}}{2} .
\end{aligned}
$$

That is

$$
\mathrm{E}[X \mid Y=y]=\frac{(y-1) \wedge 6+(y-6) \vee 1}{2}
$$

Another way to write this is

$$
\mathrm{E}[X \mid Y=y]=\frac{y}{2} \text { for } y=2, \cdots, 12
$$

Second solution: Let Z be the value of the second roll. Since X, Z are independent identically distributed, we have $E[X \mid Y]=E[Z \mid Y]$. Then using linearity of the conditional expectation, we see

$$
E[X \mid Y]=E[X+Z-Z \mid X+Z]=E[X+Z \mid X+Z]-E[Z \mid X+Z]
$$

But since $X+Z$ is a function of $X+Z$ and $E[Z \mid X+Z]=E[X \mid X+Z]$, we obtain

$$
E[X \mid Y]=X+Z-E[X \mid X+Z]=Y-E[X \mid Y]
$$

and hence

$$
E[X \mid Y]=\frac{Y}{2}
$$

Question 5. Suppose that X_{t} is a Poisson process with parameter $\lambda=1$. Find $\mathrm{E}\left[X_{1} \mid X_{2}\right]$ and $\mathrm{E}\left[X_{2} \mid X_{1}\right]$.

Solution:

Using linearity of conditional expectation together with the properties of Poisson processes, ie using the independence and stationary increments, we see

$$
\mathrm{E}\left[X_{2} \mid X_{1}\right]=\mathrm{E}\left[X_{2}-X_{1} \mid X_{1}\right]+\mathrm{E}\left[X_{1} \mid X_{1}\right]=\mathrm{E}\left[X_{2}-X_{1}\right]+X_{1}=1+X_{1} .
$$

For the other term, note that

$$
\mathrm{P}\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right)=\mathrm{P}\left(X_{1}=x_{2}-x_{1}\right)=\frac{e^{-1}}{\left(x_{2}-x_{1}\right)!}
$$

and using this with Bayes rule we get

$$
\mathrm{P}\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)=\frac{\mathrm{P}\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) \mathrm{P}\left(X_{1}=x_{1}\right)}{\mathrm{P}\left(X_{2}=x_{2}\right)}=\frac{\frac{e^{-1}}{\left(x_{2}-x_{1}\right)!} \frac{e^{-1}}{x_{1}!}}{\frac{e^{-2} 2^{x_{2}}}{x_{2}!}}=\binom{x_{2}}{x_{1}} 2^{-x_{2}} .
$$

So, we obtain

$$
\mathrm{E}\left[X_{1} \mid X_{2}=x_{2}\right]=\sum_{x_{1}=0}^{x_{2}} x_{1}\binom{x_{2}}{x_{1}} 2^{-x_{2}}=x_{2} 2^{x_{2}-1} 2^{-x_{2}}=\frac{x_{2}}{2} .
$$

In other words,

$$
\mathrm{E}\left[X_{1} \mid X_{2}\right]=\frac{X_{2}}{2}
$$

