Homework 8

Math 202 Stochastic Processes Spring 2024

Question 1. Shocks occur to a system according to a Poisson process of rate λ . Suppose that the system survives each shock with probability α , $0 < \alpha < 1$ independently of other shocks, so that its probability of surviving k shocks is α^k . What is the probability that the system is surviving at time t? What happens to this probability as $t \to \infty$?

Question 2. Let X_t be a Markov process with state space $\{1,2\}$ and rates $\alpha(1,2) = 1$, $\alpha(2,1) = 4$. Find P_t .

Question 3. Consider the continuous time Markov chain with state $\{1, 2, 3, 4\}$ and the infinitesimal generator

$$A = \begin{bmatrix} -3 & 1 & 1 & 1 \\ 0 & -3 & 2 & 1 \\ 1 & 2 & -4 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

- (a) Find the equilibrium distribution.
- (b) Suppose the chain starts at 1. What is the expected amount of time until it changes the state for the first time?
- (c) Suppose the chain starts at 1. What is the expected amount of time until the chain is in state 4?

Question 4. Consider the continuous time Markov chain with state 1, 2, 3, 4 and the infinitesimal generator

$$A = \begin{bmatrix} -2 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 1 & -3 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

- (a) Find the equilibrium distribution.
- (b) Suppose the chain starts at 1. What is the expected amount of time until it changes the state for the first time?
- (c) Suppose the chain starts at 1. What is the expected amount of time until the chain is in state 4?