Homework 7
 Math 202 Stochastic Processes Spring 2024

Question 1. For each $h>0$, let $X(h)$ have a Poisson distribution with parameter λh. Let $p_{k}(h)=$ $P(X(h)=k)$ for $k=0,1, \ldots$ Verify that

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1-p_{0}(h)}{h}=\lambda, \text { or } p_{0}(h)=1-\lambda h+o(h) \\
& \lim _{h \rightarrow 0} \frac{p_{1}(h)}{h}=\lambda, \text { or } p_{1}(h)=\lambda h+o(h) \\
& \lim _{h \rightarrow 0} \frac{p_{2}(h)}{h}=0, \text { or } p_{2}(h)=o(h)
\end{aligned}
$$

Question 2. Customers arrive at a service facility according to a Poisson process of rate λ customers/hour. Let $N(t)$ be the number of customers that have arrived up to time t. Let T_{1}, T_{2}, \ldots be the successive arrival times of the customers.
(a) Determine the conditional mean $E\left[T_{1} \mid N(t)=2\right]$.
(b) Determine the conditional mean $E\left[T_{3} \mid N(t)=5\right]$.
(Hint: It might be helpful to notice that for $U \sim \operatorname{Uniform}[0, t], t-U \sim \operatorname{Uniform}[0, t]$.)
(c) Determine the conditional probability density function for T_{2}, given that $N(t)=5$.

Question 3. Suppose that the number of calls per hour arriving at an answering service follows a Poisson process with intensity $\lambda=4$ per hour.
(a) What is the probability that fewer than two calls come in the first hour?
(b) Suppose that six calls arrive in the first hour. What is the probability that at least two calls will arrive in the second hour?
(c) The person answering the phones waits until fifteen phone calls have arrived before going to lunch. What is the expected amount of time that the person will wait?
(d) Suppose it is known that exactly eight calls arrived in the first two hours. What is the probability that exactly 5 of them arrived in the first hour?
(e) Suppose it is known that exactly k calls arrived in the first four hours. What is the probability that exactly j of them arrived in the first hour?

Question 4. Let X_{t} and Y_{t} be two independent Poisson processes with rates λ_{1} and λ_{2}, respectively, measuring number of customers arriving in stores 1 and 2, respectively.
(a) What is the probability that a customer arrives in store 1 before any customers arrive in store 2?
(b) What is the probability that in the first hour, a total of exactly four customers arrive in store 2?
(c) Given that exactly four customers have arrived at the two stores, what is the probability that all 4 went to store 1?
(d) Let T denote the time of arrival of the fist customer at store 2. Then X_{T} is the number of customers in store 1 at the time of the first customer arrival at store 2. Find the probability distribution of X_{T}.

