Homework 5 Math 202 Stochastic Processes Spring 2024

Question 1. A coin is tossed repeatedly until two successive heads appear. Find the mean number of tosses required.

- (a) Define a Markov chain (let X_n be the MC that represents the current number of successive heads that have appeared) and find its transition matrix.
- (b) Condition on the first-step and compute the mean number of tosses required.

Question 2. An urn contains five tags, of which three are red and two are green. A tag is randomly selected from the urn and replaced with a tag of the opposite color. This continues until only tags of a single color remain in the urn. Let X_n denote the number of red tags in the urn after the nth draw, with $X_0 = 3$. What is the probability that the game ends with the urn containing only red tags?

Question 3. Consider the random walk Markov chain whose transition probability matrix is given by

$$P = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0.3 & 0 & 0.7 & 0 \\ 0 & 0.3 & 0 & 0.7 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

 $Starting \ in \ state \ 1 \ determine \ the \ mean \ time \ to \ absorption.$

Question 4. A Markov chain has the transition probability matrix

$$P = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.5 & 0.1 & 0.4 \\ 0 & 0 & 1 \end{bmatrix}$$

with states labeled $\{0, 1, 2\}$. It is known to start in state $X_0 = 0$. Eventually, the process will end up in state 2. What is the probability that the time $T = \min\{n \ge 0; X_n = 2\}$ is an odd number?

Question 5. Consider the random walk with probabilities p and q = 1 - p of going forwards or backwards on the state space $\{1, 2, 3, 4\}$. The states 1 and 4 are absorbing.

- (a) What are the communication classes?
- (b) What is the periodicity of each communication class?
- (c) Let T be a transient class in this system. Show that $p_n(i,j) \to 0$ for any i, j in the communication class T.