Homework 5 Math 202 Stochastic Processes Spring 2024

Question 1. A coin is tossed repeatedly until two successive heads appear. Find the mean number of tosses required.
(a) Define a Markov chain (let X_{n} be the MC that represents the current number of successive heads that have appeared) and find its transition matrix.
(b) Condition on the first-step and compute the mean number of tosses required.

Question 2. An urn contains five tags, of which three are red and two are green. A tag is randomly selected from the urn and replaced with a tag of the opposite color. This continues until only tags of a single color remain in the urn. Let X_{n} denote the number of red tags in the urn after the nth draw, with $X_{0}=3$. What is the probability that the game ends with the urn containing only red tags?

Question 3. Consider the random walk Markov chain whose transition probability matrix is given by
$P=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0.3 & 0 & 0.7 & 0 \\ 0 & 0.3 & 0 & 0.7 \\ 0 & 0 & 0 & 1\end{array}\right]$

Starting in state 1 determine the mean time to absorption.

Question 4. A Markov chain has the transition probability matrix

$$
P=\left[\begin{array}{ccc}
0.3 & 0.2 & 0.5 \\
0.5 & 0.1 & 0.4 \\
0 & 0 & 1
\end{array}\right]
$$

with states labeled $\{0,1,2\}$. It is known to start in state $X_{0}=0$. Eventually, the process will end up in state 2. What is the probability that the time $T=\min \left\{n \geq 0 ; X_{n}=2\right\}$ is an odd number?

Question 5. Consider the random walk with probabilities p and $q=1-p$ of going forwards or backwards on the state space $\{1,2,3,4\}$. The states 1 and 4 are absorbing.
(a) What are the communication classes?
(b) What is the periodicity of each communication class?
(c) Let T be a transient class in this system. Show that $p_{n}(i, j) \rightarrow 0$ for any i, j in the communication class T.

