Homework 4 Math 202 Stochastic Processes Spring 2024

Question 1. Consider a Markov chain with state space $\{1,2,3\}$ and the transition matrix

$$
P=\left[\begin{array}{ccc}
0.4 & 0.2 & 0.4 \\
0.6 & 0 & 0.4 \\
0.2 & 0.5 & 0.3
\end{array}\right]
$$

What is the probability that in the long run that the chain is in state 1? Solve this problem in two different ways:
(a) by raising the matrix to a high power; and
(b) by directly computing the invariant probability vector as a left eigenvector.

Solution:

(a) After some calculation, it can be obtained that

$$
\left[\begin{array}{ccc}
0.4 & 0.2 & 0.4 \\
0.6 & 0 & 0.4 \\
0.2 & 0.5 & 0.3
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
1 & -5 & -4 \\
1 & -11 & -4 \\
1 & 13 & 7
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -0.2 & 0 \\
0 & 0 & -0.1
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{ccc}
\frac{25}{66} & \frac{17}{66} & \frac{4}{11} \\
\frac{1}{6} & -\frac{1}{6} & 0 \\
-\frac{4}{11} & \frac{3}{11} & \frac{1}{11}
\end{array}\right]}_{Q^{-1}} .
$$

Noting that

$$
D^{n} \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

this we have

$$
\Pi=\lim _{n \rightarrow \infty} P^{n}=Q \lim _{n \rightarrow \infty} D^{n} Q^{-1}=\frac{1}{66}\left[\begin{array}{ccc}
25 & 17 & 24 \\
25 & 17 & 24 \\
25 & 17 & 24
\end{array}\right]
$$

and hence $\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=1\right)=\frac{25}{66}$.
(b) On the other hand solving the equation $\vec{\pi}=\vec{\pi} P$, where $\sum_{i=1}^{3} \vec{\pi}(i)=1$ we get $\vec{\pi}=[25,17,24]$ and hence we get $\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=1\right)=\frac{25}{66}$.

Question 2. A Markov chains has transition probability

$$
P=\left[\begin{array}{ccc}
0.7 & 0.2 & 0.1 \\
0 & 0.6 & 0.4 \\
0.5 & 0 & 0.5
\end{array}\right]
$$

(a) Determine its limiting distribution.
(b) What proportion of time, in the long run, does it spend in each state?

Solution:

Let $\vec{\pi}=\left[\pi_{0}, \pi_{1}, \pi_{2}\right]$ be its limiting distribution. Then $\vec{\pi}=\vec{\pi} P$, that is

$$
\left[\begin{array}{lll}
\pi_{0} & \pi_{1} & \pi_{2}
\end{array}\right]=\left[\begin{array}{lll}
\pi_{0} & \pi_{1} & \pi_{2}
\end{array}\right]\left[\begin{array}{ccc}
0.7 & 0.2 & 0.1 \tag{1}\\
0 & 0.6 & 0.4 \\
0.5 & 0 & 0.5
\end{array}\right]
$$

Solving this system, we get $\left\{\begin{array}{ll}\pi_{0} & =\frac{10}{21} \\ \pi_{1} & =\frac{5}{21} \\ \pi_{2} & =\frac{6}{21}\end{array}\right.$.

Question 3. Suppose a chain on N states starts with $P\left(X_{0}=1\right)=\pi_{1}, P\left(X_{0}=2\right)=\pi_{2}$, \ldots where $\vec{\pi}=$ $\left(\pi_{1}, \ldots, \pi_{N}\right)$ is the stationary probability satisfying $\vec{\pi}=\vec{\pi} P$, where P is a regular transition probability. What is $P\left(X_{k}=1\right), P\left(X_{k}=2\right), \ldots$ for fixed $k>1$. (Hint: first do the case $k=1$.)

Solution:

We know $\vec{\pi}=\vec{\pi} P$ which corresponds to $k=1$. Suppose $\forall k \leq n$, we have $\vec{\pi}=\vec{\pi} P^{n}$. Then

$$
\begin{equation*}
\vec{\pi} P^{n+1}=\left(\vec{\pi} P^{n}\right) P=\vec{\pi} P=\vec{\pi} \tag{2}
\end{equation*}
$$

Thus, $\vec{\pi}=\vec{\pi} P^{n}, \forall n \in \mathbb{N}$. As initial probability is $\vec{\pi}$,

$$
\left[\begin{array}{llll}
P\left(X_{k}=0\right) & P\left(X_{k}=1\right) & \cdots & P\left(X_{k}=N\right) \tag{3}
\end{array}\right]=\vec{\pi} P^{k}=\vec{\pi} .
$$

Question 4. Determine the following limits in terms of the transition probability matrix P and the limiting distribution π of a finite-state regular (irreducible, aperiodic) Markov chain $\left\{X_{n}\right\}$.
(a) $\lim _{n \rightarrow \infty} P\left(X_{n+1}=j \mid X_{0}=i\right)$
(b) $\lim _{n \rightarrow \infty} P\left(X_{n}=k, X_{n+1}=j \mid X_{0}=i\right)$
(c) $\lim _{n \rightarrow \infty} P\left(X_{n-1}=k, X_{n}=j \mid X_{0}=i\right)$

Solution:

(a)

$$
\lim _{n \rightarrow \infty} P\left(X_{n+1}=j \mid X_{0}=i\right) \lim _{n \rightarrow \infty} P\left(X_{n}=j \mid X_{0}=i\right)=\pi_{j}
$$

(b) We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(X_{n}=k, X_{n+1}=j \mid X_{0}=i\right) & =\lim _{n \rightarrow \infty} P\left(X_{n+1}=j \mid X_{n}=k, X_{0}=i\right) P\left(X_{n}=k \mid X_{0}=i\right) \\
& =\lim _{n \rightarrow \infty} P\left(X_{n+1}=j \mid X_{n}=k\right) P\left(X_{n}=k \mid X_{0}=i\right) \\
& =\lim _{n \rightarrow \infty} P_{k j} P\left(X_{n}=k \mid X_{0}=i\right) \\
& =P_{k j} \pi_{k}
\end{aligned}
$$

(c) Again, making a change of variable $m=n-1$, we get

$$
\lim _{m \rightarrow \infty} P\left(X_{m}=k, X_{m+1}=j \mid X_{0}=i\right)=P_{k j} \pi_{k}
$$

Question 5. Consider the Markov chain with state space $S=\{0,1, \cdots, 5\}$ and transition matrix

$$
P=\left[\begin{array}{cccccc}
.5 & .5 & 0 & 0 & 0 & 0 \\
.3 & .7 & 0 & 0 & 0 & 0 \\
0 & 0 & .1 & 0 & .9 & 0 \\
.25 & .25 & 0 & 0 & .25 & .25 \\
0 & 0 & .7 & 0 & .3 & 0 \\
0 & .2 & 0 & .2 & .2 & .4
\end{array}\right]
$$

What are the communication classes? Which ones are recurrent and which are transient? Suppose the system starts in state 0 . What is the probability that it will be in state 0 at some large time? Answer the same question assuming the system starts in state 5 .

Solution:

Communication classes are $R_{1}=\{0,1\}, R_{2}=\{2,4\}, T=\{3,5\}$. If we reorder the matrix P according to this communication classes, we have

0
1
2
4
3
5

0.5 \& 0.5 \& 0 \& 0 \& 0 \& 0

0.3 \& 0.7 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0.1 \& 0.9 \& 0 \& 0

0.25 \& 0.25 \& 0 \& 0.25 \& 0 \& 0.25

0 \& 0.2 \& 0 \& 0.2 \& 0.2 \& 0.4\end{array}\right]\).

So, we see

$$
P_{1}=\left[\begin{array}{cc}
.5 & .5 \\
.3 & .7
\end{array}\right], P_{2}=\left[\begin{array}{cc}
.1 & .9 \\
.7 & .3
\end{array}\right], S=\left[\begin{array}{cccc}
.25 & .25 & 0 & .25 \\
0 & .2 & 0 & .2
\end{array}\right], Q=\left[\begin{array}{ll}
0 & .25 \\
.2 & .4
\end{array}\right]
$$

To understand $p_{n}(0,0)$ for n large, it is enough to compute P_{1}^{n}. To this end, if we solve for $\pi_{1} P_{1}=\pi_{1}$ we see that $\pi_{1}=(3 / 8,5,8)$ and hence $p_{n}(0,0) \rightarrow 3 / 8$ as $n \rightarrow \infty$.

To find $p_{n}(5,0)$ as $n \rightarrow \infty$, define $\alpha_{i}(j):=$ the probability of ending up in R_{i} given that the chain started at j where $j \in\{3,5\}$ and $i \in\{1,2\}$. Then we have

$$
\lim _{n \rightarrow \infty} p_{n}(5,0)=\alpha_{1}(5) \pi(0)
$$

Let $A=\left(\alpha_{i}(j)\right)$, then we have

$$
\begin{gathered}
A=(I-Q)^{-1} \tilde{S}=\left[\begin{array}{cc}
12 / 11 & 5 / 11 \\
-4 / 11 & 20 / 11
\end{array}\right]\left[\begin{array}{ll}
.5 & .25 \\
.2 & .2
\end{array}\right] \\
R_{1} \\
R_{2} \\
=
\end{gathered} \begin{gathered}
3\left[\begin{array}{cc}
7 / 11 & 4 / 11 \\
6 / 11 & 5 / 11
\end{array}\right]
\end{gathered}
$$

Hence, $\alpha_{1}(5)=\frac{6}{11}$ and $p_{n}(0,5) \rightarrow \frac{6}{11} \frac{3}{8}=\frac{9}{44}$.

Question 6. Consider the Markov chain with state space $\{1, \cdots, 5\}$ and transition matrix

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 3 / 4 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(a) Is this chain irreducible?
(b) What is the period of the chain?
(c) What are $p_{1,000}(2,1), p_{1,000}(2,2)$ and $p_{1,000}(2,4)$ approximately?

Hint: You may want to use the decomposition $P=Q J Q^{-1}$ where

$$
Q=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & 0 & 0 \\
1 & \alpha^{2} & \alpha & -2 & 0 \\
1 & \alpha^{2} & \alpha & 1 & 0 \\
1 & 1 & 1 & 0 & 7 \\
1 & 1 & 1 & 0 & -1
\end{array}\right], J=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 \\
0 & 0 & \alpha^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], Q^{-1}=\left[\begin{array}{ccccc}
1 / 3 & 1 / 9 & 2 / 9 & 5 / 36 & 7 / 36 \\
\alpha^{2} / 3 & \alpha / 9 & 2 \alpha / 9 & 5 / 36 & 7 / 36 \\
\alpha / 3 & \alpha^{2} / 9 & 2 \alpha^{2} / 9 & 5 / 36 & 7 / 36 \\
0 & -1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 / 12 & -1 / 12
\end{array}\right] .
$$

and α is the complex number that satisfies $\alpha^{2}+\alpha+1=0$.

Solution:

(a)Yes, the Markov chain is irreducible because every state communicate with every other. That is to say, for each $i, j \in\{1,2,3,4,5\}$ there is a positive probability to go from i to j in finite number of steps. (b) Note that $p_{3}(i, i)>0$ for all $i \in\{1,2,3,4,5\}$ and hence $3 \mathbb{Z} \subset J_{i}:=\left\{d: p_{d}(i, i)>0\right\}$. Moreover, $p(i, i)=p_{2}(i, i)=0$ for all $i \in\{1,2,3,4,5\}$. Hence the period is 3. (c) Since the period is 3 and 1000 is not divisible by $3, p_{1000}(2,2)=0$. Note that eigenvalues of P are $\left\{1, \alpha, \alpha^{2}, 0,0\right\}$ where $1, \alpha, \alpha^{2}$ are cubic roots of unity. After a quick calculation, one can see that the dimension of the eigenspace of the eigenvalue 0 is one, so the matrix is not diagonalizable, but we can get the Jordan decomposition as follows: $P=Q J Q^{-1}$ where

$$
Q=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & 0 & 0 \\
1 & \alpha^{2} & \alpha & -2 & 0 \\
1 & \alpha^{2} & \alpha & 1 & 0 \\
1 & 1 & 1 & 0 & 7 \\
1 & 1 & 1 & 0 & -1
\end{array}\right], J=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 \\
0 & 0 & \alpha^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], Q^{-1}=\left[\begin{array}{ccccc}
1 / 3 & 1 / 9 & 2 / 9 & 5 / 36 & 7 / 36 \\
\alpha^{2} / 3 & \alpha / 9 & 2 \alpha / 9 & 5 / 36 & 7 / 36 \\
\alpha / 3 & \alpha^{2} / 9 & 2 \alpha^{2} / 9 & 5 / 36 & 7 / 36 \\
0 & -1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 / 12 & -1 / 12
\end{array}\right] .
$$

Now, since $\alpha^{1000}=\left(\alpha^{3}\right)^{333} \alpha=\alpha$ and $\left(\alpha^{2}\right)^{1000}=\left(\left(\alpha^{2}\right)^{3}\right)^{333} \alpha^{2}=\alpha^{2}$, we see that

$$
J^{1000}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & (\alpha)^{1000} & 0 & 0 & 0 \\
0 & 0 & \left(\alpha^{2}\right)^{1000} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 \\
0 & 0 & \alpha^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Then, we get

$$
\begin{aligned}
P^{1000}=Q J^{1000} Q^{-1} & =\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & 0 & 0 \\
1 & \alpha^{2} & \alpha & -2 & 0 \\
1 & \alpha^{2} & \alpha & 1 & 0 \\
1 & 1 & 1 & 0 & 7 \\
1 & 1 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 \\
0 & 0 & \alpha^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccccc}
1 / 3 & 1 / 9 & 2 / 9 & 5 / 36 & 7 / 36 \\
\alpha^{2} / 3 & \alpha / 9 & 2 \alpha / 9 & 5 / 36 & 7 / 36 \\
\alpha / 3 & \alpha^{2} / 9 & 2 \alpha^{2} / 9 & 5 / 36 & 7 / 36 \\
0 & -1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 / 12 & -1 / 12
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
0 & 1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 0 & 5 / 12 & 7 / 12 \\
0 & 0 & 0 & 5 / 12 & 7 / 12 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

where we used the fact that $\alpha^{3}=1$ and $1+\alpha+\alpha^{2}=0$. Hence, we have $p_{1000}(2,1)=p_{1000}(2,2)=0$ and $p_{1000}(2,4)=5 / 12$.

