Homework 4 Math 202 Stochastic Processes Spring 2024

Question 1. Consider a Markov chain with state space $\{1,2,3\}$ and the transition matrix

$$
P=\left[\begin{array}{ccc}
0.4 & 0.2 & 0.4 \\
0.6 & 0 & 0.4 \\
0.2 & 0.5 & 0.3
\end{array}\right]
$$

What is the probability that in the long run that the chain is in state 1? Solve this problem in two different ways:
(a) by raising the matrix to a high power; and
(b) by directly computing the invariant probability vector as a left eigenvector.

Question 2. A Markov chains has transition probability

$$
P=\left[\begin{array}{ccc}
0.7 & 0.2 & 0.1 \\
0 & 0.6 & 0.4 \\
0.5 & 0 & 0.5
\end{array}\right]
$$

(a) Determine its limiting distribution.
(b) What proportion of time, in the long run, does it spend in each state?

Question 3. Suppose a chain on N states starts with $P\left(X_{0}=1\right)=\pi_{1}, P\left(X_{0}=2\right)=\pi_{2}$, \ldots where $\vec{\pi}=$ $\left(\pi_{1}, \ldots, \pi_{N}\right)$ is the stationary probability satisfying $\vec{\pi}=\vec{\pi} P$, where P is a regular transition probability. What is $P\left(X_{k}=1\right), P\left(X_{k}=2\right), \ldots$ for fixed $k>1$. (Hint: first do the case $k=1$.)

Question 4. Determine the following limits in terms of the transition probability matrix P and the limiting distribution π of a finite-state regular (irreducible, aperiodic) Markov chain $\left\{X_{n}\right\}$.
(a) $\lim _{n \rightarrow \infty} P\left(X_{n+1}=j \mid X_{0}=i\right)$
(b) $\lim _{n \rightarrow \infty} P\left(X_{n}=k, X_{n+1}=j \mid X_{0}=i\right)$
(c) $\lim _{n \rightarrow \infty} P\left(X_{n-1}=k, X_{n}=j \mid X_{0}=i\right)$

Question 5. Consider the Markov chain with state space $S=\{0,1, \cdots, 5\}$ and transition matrix

$$
P=\left[\begin{array}{cccccc}
.5 & .5 & 0 & 0 & 0 & 0 \\
.3 & .7 & 0 & 0 & 0 & 0 \\
0 & 0 & .1 & 0 & .9 & 0 \\
.25 & .25 & 0 & 0 & .25 & .25 \\
0 & 0 & .7 & 0 & .3 & 0 \\
0 & .2 & 0 & .2 & .2 & .4
\end{array}\right]
$$

What are the communication classes? Which ones are recurrent and which are transient? Suppose the system starts in state 0. What is the probability that it will be in state 0 at some large time? Answer the same question assuming the system starts in state 5 .

Question 6. Consider the Markov chain with state space $\{1, \cdots, 5\}$ and transition matrix

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 3 / 4 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(a) Is this chain irreducible?
(b) What is the period of the chain?
(c) What are $p_{1,000}(2,1), p_{1,000}(2,2)$ and $p_{1,000}(2,4)$ approximately?

Hint: You may want to use the decomposition $P=Q J Q^{-1}$ where

$$
Q=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & 0 & 0 \\
1 & \alpha^{2} & \alpha & -2 & 0 \\
1 & \alpha^{2} & \alpha & 1 & 0 \\
1 & 1 & 1 & 0 & 7 \\
1 & 1 & 1 & 0 & -1
\end{array}\right], J=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 \\
0 & 0 & \alpha^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], Q^{-1}=\left[\begin{array}{ccccc}
1 / 3 & 1 / 9 & 2 / 9 & 5 / 36 & 7 / 36 \\
\alpha^{2} / 3 & \alpha / 9 & 2 \alpha / 9 & 5 / 36 & 7 / 36 \\
\alpha / 3 & \alpha^{2} / 9 & 2 \alpha^{2} / 9 & 5 / 36 & 7 / 36 \\
0 & -1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 / 12 & -1 / 12
\end{array}\right] .
$$

and α is the complex number that satisfies $\alpha^{2}+\alpha+1=0$.

