Homework 4 Math 202 Stochastic Processes Spring 2024

Question 1. Consider a Markov chain with state space $\{1, 2, 3\}$ and the transition matrix

	0.4	0.2	0.4	
P =	0.6	0	0.4	•
	0.2	0.5	0.3	

What is the probability that in the long run that the chain is in state 1? Solve this problem in two different ways:

- (a) by raising the matrix to a high power; and
- (b) by directly computing the invariant probability vector as a left eigenvector.

Question 2. A Markov chains has transition probability

$$P = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0 & 0.6 & 0.4 \\ 0.5 & 0 & 0.5 \end{bmatrix}$$

- (a) Determine its limiting distribution.
- (b) What proportion of time, in the long run, does it spend in each state?

Question 3. Suppose a chain on N states starts with $P(X_0 = 1) = \pi_1, P(X_0 = 2) = \pi_2, \ldots$ where $\vec{\pi} = (\pi_1, \ldots, \pi_N)$ is the stationary probability satisfying $\vec{\pi} = \vec{\pi}P$, where P is a regular transition probability. What is $P(X_k = 1), P(X_k = 2), \ldots$ for fixed k > 1. (Hint: first do the case k = 1.)

Question 4. Determine the following limits in terms of the transition probability matrix P and the limiting distribution π of a finite-state regular (irreducible, aperiodic) Markov chain $\{X_n\}$.

- (a) $\lim_{n \to \infty} P(X_{n+1} = j | X_0 = i)$
- (b) $\lim_{n \to \infty} P(X_n = k, X_{n+1} = j | X_0 = i)$
- (c) $\lim_{n \to \infty} P(X_{n-1} = k, X_n = j | X_0 = i)$

Question 5. Consider the Markov chain with state space $S = \{0, 1, \dots, 5\}$ and transition matrix

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 & 0 & 0 \\ .3 & .7 & 0 & 0 & 0 & 0 \\ 0 & 0 & .1 & 0 & .9 & 0 \\ .25 & .25 & 0 & 0 & .25 & .25 \\ 0 & 0 & .7 & 0 & .3 & 0 \\ 0 & .2 & 0 & .2 & .2 & .4 \end{bmatrix}$$

What are the communication classes? Which ones are recurrent and which are transient? Suppose the system starts in state 0. What is the probability that it will be in state 0 at some large time? Answer the same question assuming the system starts in state 5.

Question 6. Consider the Markov chain with state space $\{1, \dots, 5\}$ and transition matrix

$$P = \begin{bmatrix} 0 & 1/3 & 2/3 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 3/4 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Is this chain irreducible?

(b) What is the period of the chain?

(c) What are $p_{1,000}(2,1)$, $p_{1,000}(2,2)$ and $p_{1,000}(2,4)$ approximately?

Hint: You may want to use the decomposition $P = QJQ^{-1}$ where

	1	α	α^2	0	0		1	0	0	0	0		1/3	1/9	2/9	5/36	7/36	
	1	α^2	α	-2	0		0	α	0	0	0		$\alpha^2/3$	$\alpha/9$	$2\alpha/9$	5/36	7/36	
Q =	1	α^2	α	1	0	, J =	0	0	α^2	0	0	$, Q^{-1} =$	$\alpha/3$	$\alpha^2/9$	$2\alpha^2/9$	5/36	7/36	•
	1	1	1	0	7		0	0	0	0	1		0	-1/3	1/3	0	0	
	1	1	1	0	$-1_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$		0	0	0	0	0		0	0	0	1/12	-1/12	

and α is the complex number that satisfies $\alpha^2 + \alpha + 1 = 0$.